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ABSTRACT

Estimates of precipitation from the Weather Research and Forecasting (WRF) Model and the Parameter-

Elevation Regressions on Independent Slopes Model (PRISM) are widely used in complex terrain to obtain

spatially distributed precipitation data. The authors evaluated both WRF (4/3 km) and PRISM’s (800-m

annual climatology) ability to estimate frozen precipitation using the hydrologicmodel Structure forUnifying

Multiple Modeling Alternatives (SUMMA) and a unique set of spatiotemporal snow depth and snow water

equivalent (SWE) observations collected for the Olympic Mountain Experiment (OLYMPEX) ground

validation campaign during water year 2016. When SUMMA was forced with WRF precipitation and used a

calibrated, wet-bulb-temperature-based method for partitioning rain versus snow, its estimation of near-peak

SWE was biased low by 21% on average. However, when SUMMA was allowed to partition WRF total

precipitation into rain and snow based on output fromWRF’s microphysical scheme (WRFMPP), simulations

of snow depth and SWEwere near equal to or better than simulations that used PRISM-derived precipitation

with the calibrated partitioning method. Over all sites, WRFMPP and simulations that used PRISM-derived

precipitation had relatively unbiased estimates of near-peak SWE, but both simulated absolute errors in near-

peak SWE of 30%–60% at a few locations. Since, on average, WRFMPP had similar errors to PRISM,

WRFMPP suggested a promising path forward in hydrology, as it was independent of gauge data and did not

require SWE observations for calibration. Furthermore, in similar maritime environments, hydrologic

modelers should pay close attention to decisions regarding rain-versus-snow partitioning, wind speed, and

incoming longwave radiation.

1. Introduction

Quantifying the amount of precipitation that falls as

snow in complex terrain, where we have limited obser-

vations, remains a challenge. Methods that produce es-

timates of spatially distributed precipitation range from

physically based numerical weather models, such as

the Weather Research and Forecasting (WRF) Model

(Skamarock et al. 2008), to statistical models that spa-

tially interpolate surface precipitation observations. A

widely used statistical model is the Parameter-Elevation

Regressions on Independent Slopes Model (PRISM),

which is based on statistical regressions that account for

topography and coastal proximity (Daly et al. 2008). The

PRISM climatology has been used to spatially interpolate

gauge observations of precipitation to a grid in many spa-

tiotemporal datasets, including Hamlet and Lettenmaier

(2005), Maurer et al. (2002), NLDAS-2, Hamlet et al.

(2010), Livneh et al. (2013), and NCEP Stage IV.

Previous studies have found that in complex terrain

there is significant uncertainty in spatially distributed

precipitation estimates (Gutmann et al. 2012; Livneh

et al. 2014; Henn et al. 2016) due to a sparse network

of gauges (Lundquist et al. 2003) and observational

uncertainty at the gauge itself (Goodison et al. 1998;

Rasmussen et al. 2012). WRF or PRISM are frequently

used to force hydrologic models, which guide decisions

regarding avalanche control, reservoir storage, and flood

forecasting. Therefore, uncertainties in the estimation of

precipitation directly translate into uncertainties in fore-

casts for agriculture, transportation, hydroelectric power,

and recreation.

The Olympic Mountain Experiment (OLYMPEX)

was a ground validation campaign for the NASAGlobal
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Precipitation Measurement (GPM) mission on the

Olympic Peninsula inWashington, United States (Houze

et al. 2017), and offered a unique opportunity to compare

the performance of WRF and PRISM-derived pre-

cipitation in a maritime mountain environment. While

the Olympic Mountains have been the focus location of

previous studies, which evaluated dynamical (Anders

et al. 2007; Minder et al. 2008) and statistical (Daly et al.

2008) precipitationmodels, its historical lack ofmountain

observations allowed us to estimate how both approaches

work at higher mountain elevations, where data were not

previously available for model training and development.

For the OLYMPEX campaign, we collected a unique

set of independent snow depth and SWE observations

(using cameras, poles, snow course observations, and lidar,

described in section 3). We used these observations to

evaluate the ability of PRISM and a high-resolution

(4/3km) atmospheric model simulation (WRF; Mass

et al. 2003) to determine frozen precipitation throughout

water year (WY) 2016 and during individual storm events

(focused on the OLYMPEX intensive observational pe-

riod from November to December 2015).

This paper is organized as follows. Section 2 provides

background information on previous evaluations of

WRF and PRISM. Section 3 describes the location of

this study and the data used. Section 4 explains our

methodology. Section 5 presents the results, and section

6 discusses sensitivities within this study. Section 7 offers

conclusions.

2. Background

WRF and PRISM are both commonly used to obtain

spatially distributed estimates of precipitation. WRF is

an atmospheric model, which simulates atmospheric

dynamics and contains a cloud microphysical scheme.

The microphysical scheme parameterizes processes

that control the formation, growth, and fallout of pre-

cipitation from clouds. WRF does not require surface

gauge observations and represents varying synoptic

conditions but is sensitive to various model decisions,

such as model resolution (Colle et al. 1999; Colle and

Mass 2000), boundary conditions (Yang et al. 2012), and

the chosen microphysical scheme (Jankov et al. 2009;

Liu et al. 2011; Minder and Kingsmill 2013). In contrast,

PRISM is a gridded climatology map, which estimates

the spatial variability in precipitation due to precipitation

observations, topography, and coastal proximity. To

obtain a spatiotemporal dataset, total precipitation

(solid and liquid) observations at the surface from

nearby gauges are used with the climatology to spatially

interpolate precipitation between observations. There-

fore, PRISM-derived precipitation is highly dependent

on the presence and quality of nearby precipitation

observations.

A previous evaluation of WRF and PRISM in

Colorado showed that significant differences appeared

at locations furthest away from precipitation observa-

tions and that PRISM was biased about 150% in

estimates of winter precipitation compared to an inde-

pendent SNOTEL observation (Gutmann et al. 2012).

In the Sierra Nevada, PRISM-derived spatiotemporal

precipitation datasets were shown to perform well

compared with independent observations on a total

water year time scale (median 610% errors); however,

significant errors occurred during unusual synoptic

conditions (Lundquist et al. 2015).

In the Olympic Mountains, where little model training

data exists, the PRISM climatology has been shown to

perform better than other statistical precipitation models

(Thornton et al. 1997; Hijmans et al. 2005) because it was

able to simulate the nonmonotonic relationship between

precipitation and elevation (Daly et al. 2008).Meanwhile,

mesoscale atmospheric models were able to capture

small-scale (;10km) orographic precipitation enhance-

ment in the Olympic Mountains on annual and seasonal

time scales, but individual events contained significant

errors (Anders et al. 2007; Minder et al. 2008). Further-

more, in a similar climate, mesoscale atmospheric models

have helped resolve issues with rain-versus-snow parti-

tioning by using the microphysical scheme output to

calculate the fraction of rain and snow in an individual

event instead of relying solely on surface temperature

(Wayand et al. 2016a).

Herein, we further evaluated bothWRF and PRISM’s

ability to estimate frozen precipitation using a unique

spatiotemporal snow depth and SWE dataset collected

during the OLYMPEX campaign. However, because

our snow depth and SWE observations are not a direct

measurement of frozen precipitation, we relied on a

hydrologic model. Precipitation is the greatest source of

uncertainty in a snow model (Raleigh et al. 2015), and

we therefore used the hydrologic model (evaluated at

four nearby SNOTEL sites) to simulate snow depth and

SWE from estimates of precipitation by WRF and

PRISM. We then compared these simulations to inde-

pendent observations of snow depth and SWEacross the

mountain range.

3. Location and data

a. Location and climate

The Olympic Mountains are located in the north-

western corner of Washington State, United States

(Fig. 1). Themountain range causes significant gradients
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in precipitation as moisture-laden southwest flow

is orographically uplifted. Surface-based radiosonde

data from 1973 to 2007 at the nearby Quillayute

sounding site showed that the median 08C isotherm

during December–March precipitation events was at

1200m. This rain–snow transition zone is further dem-

onstrated at the SNOTEL sites (elevation range of 1270–

1527m), where we found that 40% of the hours with

observed precipitation between 1 November 2015 and

1 April 2016 fell between 218 and 28C. This makes rain-

versus-snow partitioning of total precipitation critical for

accurately simulating snowfall in this environment.

b. Snow depth monitoring sites

Within Olympic National Park, we monitored snow

depth, temperature, and relative humidity (RH) at

12 sites. At each location, 2–3 Wingscape time-lapse

cameras were deployed in a nearby tree and took

pictures of 3–4 marked snow depth poles every hour

during daylight hours [0900–1600 Pacific standard

time (PST)]. Poles were located in flat, grassy, forest

clearings (;10–25m diameter) and ranged in height

from 4 to 6m. Each pole had black tape every 5 cm

and brightly colored tape every 50 cm. Currier (2016)

describes the processing of the camera images to

snow depth values. When and where the uncertainty

in the measurements was greater than 65 cm, the

measurements were not used for evaluation, but

were instead shown with uncertainty bounds to pro-

vide guidance in the evolution of the snowpack.

Uncertainty was based on laboratory experiments,

where poles were bent at various angles, and the

camera viewed the pole at different angles (Currier

2016). Pole measurements were averaged together if

two or more poles provided measurements with un-

certainty of less than 5 cm.

Adjacent to the cameras, in conifer trees, we placed

HOBO U23 Prov2 temperature/RH sensors within

plastic radiation shields following the methods of

Lundquist and Huggett (2008). The temperature sen-

sors were reported by the manufacturer to have an

uncertainty of 60.218C at 08C, with uncertainty in-

creasing to about 60.758C at 2408C. RH accuracy

was within 62.5% between 10% and 90% RH. The

FIG. 1. Independent snow-depth-monitoring locations used within this study relative to PRISM 30-yr

annual precipitation averages on the Olympic Peninsula in northwest Washington State, United States.

Acronyms and spatial distributions of snow monitoring site locations are shown in Fig. 8. Red outlined

RAWS sites are for sites at an elevation , 200 m. Blue outlined RAWS sites are between 670 and 730 m,

where snowfall is possible.

OCTOBER 2017 CURR IER ET AL . 2683



uncertainty below 10% and above 90% increases to a

maximum of 63.5%, including hysteresis.

c. NRCS SNOTEL data

Observations of hourly temperature, daily incremental

precipitation, daily snow depth, and daily SWE data were

received from the four National Resource Conservation

Service (NRCS) SNOTEL locations. Twoof the SNOTEL

sites, Buckinghorse and Waterhole, also provided hourly

observations of RH, and Waterhole provided hourly av-

eraged wind speed. For this study, daily incremental pre-

cipitation was uniformly distributed to hourly values.

NRCS sites use precipitation accumulation reservoir

gauges with antifreeze. Figure 1 shows that the majority

of the SNOTEL locations are on the leeward side of the

mountains. The Buckinghorse site is located in the

center of the Olympic Peninsula’s mountain range but

was installed in 2007. Buckinghorse was therefore not

used in the development of the PRISM climatology.

Current SNOTEL temperature data are biased warm

at cold temperatures because of an erroneous conver-

sion from voltages to degrees Celsius (Julander et al.

2007; Oyler et al. 2015; D. S. Harms et al. 2016, meeting

presentation). We corrected for the bias in the obser-

vations by using a linear equation [(1)] based on a least

squares regression between the SNOTEL temperature

observations and collocated HOBO temperature sen-

sors during WY 2014, as follows:

T
corr

5 1:033T
SNTL

2 0:90, (1)

where TSNTL is the observed raw SNOTEL temperature

(8C) and Tcorr is the corrected SNOTEL temperature (8C).

d. RAWS data

Additional daily precipitation observations were

received from several Remote Automated Weather

Stations (RAWS). Again, the daily precipitation data

were uniformly distributed to hourly precipitation.

RAWS use unheated tipping-bucket gauges, which

may be subject to freezing and thus were not used

in the creation of the PRISM climatology outside of

May–September (Daly et al. 2008). Three of the five

RAWS stations were at elevations of around 700m,

where snowfall is possible. We therefore explored the

sensitivity of our results to using these higher-elevation

gauges in our precipitation estimates predicted with

PRISM weights [sections 4d(1) and 6c].

e. U.S. Climate Reference Network (USCRN)

Hourly precipitation data were downloaded from

the Quinault Climate Reference Network location,

which uses heated weighing gauges. Hourly data were

aggregated to daily values and then uniformly distrib-

uted to be consistent with RAWS and SNOTEL data.

f. PRISM

The PRISM climatology group provides amap of total

annual precipitation estimates over a 30-yr period

throughout the contiguous United States. PRISM relies

on a regression between elevation and observations

of precipitation, and individual grid cells are further

modified based on the coastal proximity and topo-

graphic facets (Daly et al. 2008). These modifications

allow PRISM to estimate rain shadows and the oro-

graphic enhancement of precipitation. In this study, we

used the 800-m, 30-yr (1981–2010) annual climate nor-

mal. We combined the nearest PRISM climatology grid

cell with observations of precipitation from the RAWS,

USCRN, and SNOTEL sites to estimate precipitation

at a snow monitoring site. See section 4d(1) for more

details. The maximum difference between the PRISM

elevation map and the elevation of our snow monitoring

sites was 317m, with a mean difference and mean ab-

solute difference of 65 and 96m, respectively.

g. WRF

The WRF data were provided by the Northwest

Modeling Consortium (Mass et al. 2003), which runs

and archives WRF version 3.6.1 output in four nested

domains (36, 12, 4, and 4/3 km). The 4/3-km nested

domain encompasses Washington State and uses the

Thompson et al. (2004, 2008) microphysical scheme

without convective parameterizations for numerical

weather prediction. Shortwave and longwave radia-

tion simulations used the Rapid Radiative Transfer

Model (Mlawer et al. 1997). WRF was run with 84-h

forecasts that were initialized every 12 h. As in Minder

et al. (2010) and Wayand et al. (2016a), the 12–24 h

forecasts were extracted from the 84-h forecasts and

concatenated to provide a temporally continuous

dataset at an hourly time step. The maximum differ-

ence between the WRF terrain height and the eleva-

tion of each snow monitoring site was 361m,

with a mean difference and mean absolute difference

of 70 and 105m, respectively.

h. Airborne snow observatory snow depth and snow
density observations

Two spatially complete snow depth datasets from

airborne scanning lidar were provided by the Airborne

Snow Observatory (ASO) team (Painter et al. 2016).

Snow-on flights were flown on 8–9 February 2016 and

29–30March 2016, and the data were processed to a 3-m

gridded resolution of snow depth. The accuracy of ASO

in a nonforested, flat, 15m 3 15m area has been shown
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to have a mean absolute error of less than 8 cm, with an

overall bias of less than 1 cm (Painter et al. 2016). In

appendix A, we compare the ASO data with our snow

depth pole measurements. In this paper, we focus on

snowfall accumulation and not on forest–snow in-

teractions. Therefore, we used the classification from the

Compact Airborne Spectrographic Imager (CASI) 1500

imaging spectrometer, which was aboard the ASO, to

remove forested pixels from the analysis. Using the

March snow depth map, this step removed 17%–78% of

the snow depth pixels within a 60-m bounding box

(mean 54%).

Snow density observations were collected with a fed-

eral sampler on 8 February 2016 and 7 April 2016 at

seven locations near our snow depth locations to convert

ASO snow depth observations to SWE. To account for

the snow becoming denser between 29–30 March 2016

and 7 April 2016, we took the difference, at the nearest

SNOTEL site, between density observations on

30 March 2016 and 7 April 2016. We then subtracted

the change in density over the eight days (20kgm23)

from the 7 April 2016 observations. Therefore, obser-

vations of density to convert ASO snow depth to SWE

on 29–30 March 2016 ranged from 450 to 490 kgm23,

with a mean of 480kgm23.

4. Methodology

a. Overview

As outlined in Fig. 2, we first calibrated the snow

model at the available SNOTEL sites using observed

precipitation that was uniformly distributed throughout

the day. We adjusted the precipitation partitioning pa-

rameters so that the model was unbiased for SWE from

the start of the season until peak SWE (Fig. 2, phase

1A). We chose two sets of parameter values taken from

the literature for our new snow density and compaction

routines to provide a range of uncertainty in modeled

snow depth (Fig. 2, phase 1B). We then used the

same model structure and parameters at all of our

independent snow monitoring stations, using pre-

cipitation estimated with PRISM and predicted by

WRF. Detailed descriptions of how PRISM was used to

distribute precipitation and how WRF data were used

to run the hydrologic model are described in section 4d

and appendix B. All simulations were then evaluated

against our observations of snow depth and against the

median ASO snow depth/SWE values within a 60-m

square bounding box surrounding each site (Fig. 2,

phase 2). The following sections provide more detail

on the model choice, forcing data, calibration, and

evaluation.

b. Model description

In this study we used the Structure for Unifying

MultipleModelingAlternatives (SUMMA) (Clark et al.

2015a,b,c). SUMMA is a modular, physically based,

energy balancemodel with a numerical solver at its core.

This allowed additional parameterizations to be added

to the model and allowed multiple existing modeling

approaches to be vetted against one another. SUMMA

was run at an hourly time step.

c. Model calibration and evaluation at SNOTEL sites

1) RAIN-VERSUS-SNOW PARTITIONING AND SWE

Rain–snow partitioning is the most critical model

parameterization in a warmmaritime snow environment

(Wayand et al. 2016a,b). Therefore, the model was

calibrated to partition rain versus snow in WY 2016 by

searching for an optimal parameter value Tcrit. Param-

eter Tcrit is the midpoint value of the wet bulb temper-

ature Tw range. The temperature range Trange was held

constant at SUMMA’s default value, 28C. The Trange

describes how precipitation transitions linearly between

rain and snow, as described in USACE (1956). To cali-

brate the model, we varied Tcrit in increments of

0.058C, between228 and 28C, to find when our objective

function [(2)] had a near-zero bias from the start of the

snow season until the date of peak SWE (Fig. 3). Our

objective function is written as follows:

Bias/SWEPk
5 abs

2
6664
�

SNTL

n51
�
k

i51

(SWE
mi,n

2 SWE
oi,n

)/k

SNTL

3
7775, (2)

where n is an individual SNOTEL site and k signifies the

number of days between the first day of snow accumu-

lation and the day of peak SWE. Parameter SWEm is

modeled SWE averaged from hourly time steps to daily

values, and SWEo is observed daily SWE. Parameter

SNTL is the number of SNOTEL sites used to calibrate

the model. In this study, SNTL differs between two and

four, depending on the source of specific humidity q

used in the model.

Accurate measurements of q are essential, as the tem-

perature during snowfall events is typically near the rain-

versus-snow threshold, and SUMMA determines rain

versus snow with Tw because Tw has been shown to

improve the phase of the precipitation at subdaily time

steps (Marks et al. 2013). Therefore, we tested the sensi-

tivity of our model calibration to different q inputs, spe-

cifically comparing those measured in situ (Table 1, set 1)
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with those predicted by WRF (Table 1, set 2; Fig. 2,

phase 1A). Despite differences in q causing differences of

simulated SWE at individual SNOTEL sites (Table 1),

both sets of forcing data converged on the sameTcrit value

(218C) for a minimum Bias/SWEPk
.

All other model forcing data related to the energy

balance were either closely evaluated at the nearby

Snoqualmie Pass energy balance tower (Wayand

et al. 2015) or are further discussed in section 6d

and in appendix B. Furthermore, adjusted model

parameters, beyond Tcrit, were fit to observations

from Snoqualmie Pass, Washington, which has a

similar climate, or were taken from the literature

(Tables C1 and C2).

2) SNOW DEPTH

We used two sets of literature values for the new snow

density and compaction parameters (Table C2, Figs. 2, 3)

to generate an ensemble that accounts for the model

uncertainty in simulating snow depth. Within these two

sets of snow density parameters, the choice in q was also

varied to generate a four-member ensemble at SNOTEL

sites with observedRH.The first snow density parameter

set rw used literature values fromWayand et al. (2016b),

who evaluated various parameters at the nearby Sno-

qualmie Pass. The other set of snow density parameters

rHPA came from two separate studies. New snow density

parameters came from the Hedstrom and Pomeroy

(1998) study because this represented the opposite end of

the new snow density spectrum. The rHPA parameter

values were optimized from new snow density observa-

tions in a cold continental climate, which typically pro-

vides much lower new snow density values (Judson and

Doesken 2000; LaChapelle 1958). Last, in rHPA, we used

default compaction parameters from the commonly used

Anderson (1976) parameterization.

FIG. 2. Conceptual figure of the overarching methodology with two phases: 1) the calibration of the Tcrit model parameter for rain vs snow

calibration (using SWE observations) and modeled snow depth evaluation against the four available SNOTEL sites (black line) and 2)

evaluating simulations of snow depth and SWE from different precipitation estimates against OLYMPEX snow depth and SWE observations

(snow depth poles and the median of an ASO 60-m bounding box—converted to SWE using snow course observations).
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Simulations of snow depth for various snow density

and specific humidity decisions overall performed well,

with parameters from rw consistently simulating lower

snow depth values than the rHPA parameters (Fig. 3).

Neither parameter set provided a perfect model simu-

lation, nor was one consistently underpredicting or

overpredicting observed snow depth (Table 2). Fur-

thermore, there was a significant distribution of snow

depth within a spatial field of 60m, surrounding a

NRCS SNOTEL site (Fig. 3). We used the mean of the

ensemble going forward to reduce the dimensionality

of the model uncertainty and because the mean was

within the distribution of ASO snow depth values.

When evaluating our model at the SNOTEL sites

(Table 2), we chose 29–30 March 2016 as an evaluation

date instead of peak SWE because 29–30 March was the

closest date to peak SWE (;13 days after) that we had

observations at all of our sites. We found the percent

errors inmodeled versus observed SWEat the SNOTEL

sites to be relatively consistent, temporally, and nor-

mally distributed around 0%, with a standard deviation

of 10% and a 95% confidence interval between 219%

and 19%. Therefore, in the annual precipitation evalu-

ation phase (Fig. 2, phase 2), we determined an over-

accumulation or underaccumulation of total annual

frozen precipitation to occur when the difference be-

tween observed SWEand themodeled SWEwas greater

than 19% on 29–30 March 2016.

d. PRISM-derived precipitation and WRF Model
configurations

1) HYDROLOGIC MODEL SIMULATIONS WITH

PRISM-DERIVED PRECIPITATION

In the frozen precipitation evaluation phase, model

runs denoted PRISM used the PRISM annual clima-

tology with n sources of precipitation Pi to estimate

precipitation at a snow monitoring station. Except for

the sensitivity discussion in section 6c, n is equal to 9

and contains all SNOTEL, RAWS, and USCRN

gauges shown in Fig. 1. At each snow monitoring

station, the ratio mi between the nearest 30-yr normal

PRISM annual precipitation value at the snow

FIG. 3. Best-fit modeled SWE from the calibration (Tcrit: 218C, Trange: 28C) and the ensemble of snow depth simulations. ASO lidar

observations were available over two of the four SNOTEL sites. Theminimumandmaximum values of the box-and-whisker plot show the

bottom 10% and top 90% of the snow depth values within the 60-m bounding box, respectively.

TABLE 1. Bias until peak SWE from WY 2016 at four NRCS

SNOTEL sites using model forcing decisions as described in Table

B1 and using model parameters from Table C1.

Bias until peak SWE (cm)

Model forcing: Set 1 Model forcing: Set 2

Dungeness — 0

Mount Crag — 26

Buckinghorse 22 2

Waterhole 1 5

All (mean) 0 0
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monitoring station (PRISMSMS) and all precipitation

sites (PRISMGauge) was determined:

m
i
5

PRISM
SMS

PRISM
Gauge

. (3)

The relative inverse distance was also calculated to

determine a set of weights for an individual snow mon-

itoring site wi:

w
i
5

1/d
i

�
n

i51

1/d
i

, (4)

where di is the distance between a snow monitoring site

and a precipitation source. In section 6c we discuss using

inverse distance squared weighting (IDSW) 1/d2
i versus

inverse distanceweighting (IDW). The total precipitation

at a snow monitoring station Psms, which was used to run

the hydrologic model, was then calculated:

P
sms

5 �
n

i51

P
i
m

i
w

i
. (5)

This allowed a precipitation site that was closer to the

snow monitoring station to influence the precipitation

at the snow monitoring station more than a source of

precipitation farther away. We note that we tested the

same methodology with the monthly climatology

datasets, where mi changes based on the month, and

found nearly equivalent simulations of snow depth

and SWE.

2) HYDROLOGIC MODEL CONFIGURATIONS WITH

WRF DATA

Model runs using WRF precipitation partitioned pre-

cipitation in two different ways. In WRFLP, the nearest

precipitation grid cell had precipitation aggregated to daily

values and then uniformly distributed to hourly values to

be consistent with the methods used during model cali-

bration and with the PRISM simulations. WRFLP then

used the same linear precipitation–partitioning (LP)

scheme as was used in the calibration and in simulations

that used PRISM-derived precipitation.

WRFMPP used output from WRF’s microphysical

scheme to partition the hourly precipitation. SUMMA

was modified to allow the fraction of rain or snow in any

given event to be prescribed using output from WRF’s

microphysical scheme. Herein, precipitation partition-

ing was calculated as

rain fraction5 12
Snow1Hail1Graupel

Total Precipitation
, (6)

where snow, hail, graupel, and total precipitation were

extracted fromWRF’smicrophysical scheme (Thompson

et al. 2008). Both WRFLP and WRFMPP have the same

model forcing data and model decisions as in the cali-

bration and PRISMmodel runs (except for those related

to precipitation and partitioning).WRFFull used the same

method for precipitation and precipitation partitioning as

WRFMPP. However, WRFFull usedWRF output for all of

the hydrologicmodel forcing data.Model forcing data are

detailed in appendix B.

5. Results

a. Frozen precipitation evaluation

1) ANNUAL DIFFERENCES

Modeled and observed snow depth time series for

WY 2016 represented storm timing well (Fig. 4). Fur-

thermore, simulations of snow depth and SWE diverged

based on their source of precipitation (PRISM and

WRFLP) and based on how the precipitation was

partitioned (WRFLP and WRFMPP; Figs. 4, 5). PRISM,

WRFLP, and WRFMPP simulations of snow depth and

TABLE 2. Difference between modeled SWE and observed SWE on 29–30 Mar 2016 at four NRCS SNOTEL sites. Model differed in

various snow density (Table C2) and specific humidity q decisions.

SWE differences on 29–30 Mar 2016 [cm (%)]

Specific humidity source q from obs. RH q from WRF q from obs. RH q from WRF

Ensemble mean

New snow density

and compaction

parameters

Wayand et al.

(2016b)

Wayand et al.

(2016b)

Hedstrom and Pomeroy

(1998) and Anderson

(1976)

Hedstrom and Pomeroy

(1998) and Anderson

(1976)

Dungeness — 3 (14) — 4 (17) 3 (15)

Mount Crag — 213 (214) — 212 (213) 212 (214)

Buckinghorse 210 (26) 26 (24) 27 (24) 23 (22) 26 (24)

Waterhole 0 (0) 9 (8) 2 (1) 9 (8) 5 (4)

All (mean) 25 (23) 22 (1) 23 (21) 0 (3) 23 (0)
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SWE had similar mean absolute percent differences,

while WRFFull had the highest mean absolute percent

difference and was biased low in both snow depth and

SWE (Table 3). We attributed the overall low bias in

WRFFull to high wind speeds and ablation errors

rather than precipitation errors and leave this to fur-

ther discussion in section 6d.

WRF precipitation, partitioned by the microphysical

scheme output (WRFMPP), had a smaller mean differ-

ence than WRF precipitation partitioned using the

calibrated linear threshold (WRFLP). WRFLP was gen-

erally biased low, with a mean difference in SWE across

all sites of233 cm (221%), which was outside the snow

model’s 95% confidence interval. Furthermore, WRFLP

had a higher mean absolute difference, which showed

that errors were generally larger in magnitude for

WRFLP thanWRFMPP. Similar percent differences were

also found for simulations of snow depth.

The WRFMPP hydrologic model simulated SWE and

snow depth with similar skill to PRISM simulations, as

they had similar mean differences and mean absolute

differences. The best performance was related to how the

errors were reported and to the metric used. For instance,

PRISM and WRFMPP simulations were both generally

unbiased, with similar mean percent errors. WRFMPP

generally had larger absolute errors than PRISM simula-

tions (higher mean absolute difference), but these were

generally located at sites with more observed snow (lower

mean absolute percent difference). PRISM’s ensemble

mean fell outside the range of the snow model’s un-

certainty (619%) at three sites, compared to WRFMPP,

which fell outside of this range at five sites. This implies we

are more confident that PRISM was able to estimate

frozen precipitation at more locations on an annual basis.

However, it is difficult to definitively say which pre-

cipitation estimate performed best because bothWRFMPP

FIG. 4. Snow depth time series at all 12 independent snow monitoring sites. The thick line represents the ensemble mean, while the

thin dotted lines represent individual ensemble members. Black dotted lines with gray shading show snow depth measurements from the

time-lapse cameras along with their uncertainty.
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and PRISM simulations were generally unbiased when

compared to the observations of SWE or snow depth.

2) OLYMPEX INTENSIVE OBSERVATIONAL

PERIOD

We had high-quality observations of snow depth from

the time-lapse camera network during the intensive

observational period of the OLYMPEX campaign

(from 1 November to 23 December 2015; Fig. 4). During

this time period we averaged our snow depth observa-

tions to daily averages and our model estimates of snow

depth between 0900 and 1600 PST to be consistent with

the observations.We then compared cumulative sums of

the positive differences between daytime averages of

snow depth from the model and the observations.

We computed cumulative sums of snow accumulation

for the entire OLYMPEX intensive observational period

and for theDecember snowstorms (4–23December 2015).

Differences in accumulated snowfall between modeled

and observed are shown in Tables 4 and 5.

From 1 November to 23 December 2015, we found

the difference between the modeled cumulative sum

(all ensemble members) at the SNOTEL sites and the

cumulative sum of the observations to have a mean

percent difference of 24% and a standard deviation

among all ensemble members to be 15%. Using a nor-

mal distribution with a mean of 24% and the standard

deviation of 15%, we found that the 95% confidence

interval was between 234% and 24%. Using the same

analysis during the December storms, the mean of the

percent errors in total accumulation was 23% with a

95% confidence interval between 229% and 30%.

(i) 1 November–23 December 2015

PRISM, WRFMPP, and WRFFull simulations all had

similar mean absolute differences (16%–18%) and

FIG. 5. SWE simulations at all 12 independent snowmonitoring sites. The thick line represents the ensemblemean, while the thin dotted

lines represent individual ensemble members. Observed snow depth from ASO was converted to SWE using nearby snow density

observations.
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mean differences, which were less than the model

uncertainty (Table 4; Fig. 6). WRFLP was within the

model uncertainty, but it had the most dramatic

low bias (220%). In general, PRISM simulations

overaccumulated the November storm but under-

accumulated the December storms (Figs. 6, 7), resulting

in an overall mean percent difference of 210%. While

PRISM simulations had a smaller mean difference, and

mean absolute difference, they exhibited a larger stan-

dard deviation than the WRF simulations that used the

microphysical partitioning, indicating that PRISM sim-

ulations had compensating errors. WRF simulations

with the microphysical partitioning (WRFMPP and

WRFFull) differed slightly in cumulative snow depth.

TABLE 4. Total difference in accumulated snow depth between the model ensemble mean and observed, accumulated snow depth

during the intensive OLYMPEX observational period (from 1 Nov to 23 Dec 2015). Simulations at sites that are outside of the model’s

95% confidence interval are in bold.

Ensemble mean difference [modeled 2 observed; cm (%)]

Site name PRISM WRFLP WRFMPP WRFFull

Wynoochee Pass 2125 (241) 2170 (255) 2108 (235) 2117 (238)

Mount Christie 228 (28) 268 (220) 5 (1) 26 (22)

Lake Connie 216 (25) 257 (218) 299 (232) 296 (231)

Black and White West 264 (219) 2109 (233) 2123 (237) 2105 (232)

Mount Seattle East 8 (2) 256 (217) 236 (211) 218 (25)

Mount Steel 259 (214) 2121 (229) 2118 (228) 2120 (228)

Mount Seattle West 249 (211) 2119 (227) 2121 (228) 2104 (224)

Black and White East 20 (8) 262 (225) 228 (211) 227 (211)

Anderson Pass East 245 (215) 7 (2) 17 (5) 23 (7)

Anderson Pass West 2109 (229) 259 (216) 254 (214) 248 (213)

West of Lake Lacrosse 270 (221) 219 (26) 222 (26) 27 (22)

Mount Hopper 122 (37) 4 (1) 215 (26) 211 (23)

Total Sites 12.0

Mean difference 235 (210) 269 (220) 258 (217) 253 (215)

Mean absolute difference 60 (17) 71 (21) 62 (18) 57 (16)

Std dev of the errors 65 (20) 53 (16) 52 (15) 52 (15)

TABLE 3. Ensemble mean of modeled SWE from various sources of precipitation compared to observations on 29–30 Mar 2016. The

average modeled SWE value between 29 and 30 Mar 2016 from the ensemble mean was compared to the median value within a 60-m

bounding box from the ASO snow depth data that had the forest values removed (converted to SWE with nearby density observations).

Simulations at sites that are outside of the model’s 95% confidence interval are in bold.

March ensemble mean difference [modeled 2 observed; cm (%)]

Site name PRISM WRFLP WRFMPP WRFFull

Wynoochee Pass 249 (248) 280 (279) 29 (29) 248 (248)

Mount Christie 216 (210) 240 (226) 32 (21) 2 (1)

Lake Connie 218 (211) 254 (231) 253 (231) 299 (258)

Black and White West 29 (31) 25 (25) 7 (8) 214 (215)

Mount Seattle East 56 (58) 11 (11) 45 (46) 28 (29)

Mount Steel 231 (214) 284 (237) 278 (234) 2100 (244)

Mount Seattle West 12 (7) 243 (224) 227 (215) 248 (226)

Black and White East 18 (12) 232 (222) 26 (24) 239 (226)
Anderson Pass East 225 (216) 27 (24) 13 (8) 23 (22)

Anderson Pass West 230 (217) 29 (25) 5 (3) 215 (29)

West of Lake Lacrosse 210 (27) 4 (3) 21 (15) 13 (9)

Mount Hopper 19 (8) 262 (228) 259 (227) 298 (244)

Total Sites 12.0

Mean difference 24 (21) 233 (221) 29 (22) 235 (219)

Mean absolute difference 26 (20) 36 (23) 30 (18) 42 (26)

Std dev of errors 30 (27) 32 (24) 38 (23) 45 (26)

Number of occurrences outside 619% 3 7 5 7
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Differences were attributed to new snow densities, as

WRF’s air temperature was on average 0.88C colder

than observed temperatures. Additionally, WRFFull

simulations generally had higher wind speeds and more

incoming longwave radiation, leading to melt during

accumulation events.

(ii) 4–23 December 2015

Considering just December, when the Olympic Moun-

tains received most of its snow in WY 2016 (;2–3m of

accumulated snow depth), WRFMPP and WRFFull had the

smallest mean difference (215% and 216%) and mean

absolute difference, but generally underaccumulated

(Table 5; Fig. 7). Meanwhile, WRFLP was also biased low,

with the mean percent difference falling outside the 95%

confidence interval. PRISM simulations on average accu-

mulated less snow than WRF simulations that used

the microphysical partitioning method but more snow

than WRFLP.

The temperature-based threshold led to errors in

PRISM and WRFLP simulations over shorter time pe-

riods. For instance, observations showed that during

the 4–6 December 2015 period, snowfall increased,

while PRISM and WRFLP simulations generally

stopped accumulating after 5 December. During the

5–6 December period, Tw increased from 218C to

around 08C. Snowfall occurred and was captured by the

microphysical partitioning method, but our calibrated

linear partitioning method had no snowfall occur if

Tw was at or above 08C. Further partitioning errors are
discussed in section 6b.

We also note that all methods were biased low by

about 30% during the 19–23 December period, where

observations showed accumulations of 1.0–1.5m of

snow depth. Parameter Tw during this time period was

consistently below 228C (100% snow), and therefore

errors were not due to partitioning. We also note that

modeled snow accumulation at the four SNOTEL sites,

which used observed precipitation, had a mean differ-

ence of 1%, and therefore errors were likely not caused

by gauge undercatch or errors within the hydrologic

model but were likely due to precipitation estimates.

During this time period, the primary storm direction

was from the northwest rather than from the southwest.

We suggest that future work more thoroughly in-

vestigate how the primary storm direction influences

WRF and PRISM-derived estimates of snowfall within

the Olympic Mountains.

b. Spatial distribution of errors

No set of model simulations had errors that resulted

in a definitive spatial pattern (Fig. 8). However, we

speculate that the annual average precipitation values in

PRISM are too low for the prediction of snowfall in the

southern Elwha Watershed [Mount Christie (MC),

Buckinghorse (BK)] and in eastern Quinault [Anderson

Pass East (APE), Anderson Pass West (APW), West

of Lake Lacrosse (WLL)], as the PRISM simulations

of snow depth and SWE are biased low in this region.

The percent differences between modeled SWE with

PRISM-estimated precipitation and ASO-derived SWE

at BK (215%), MC (210%), WLL (210%) and both

TABLE 5. Total difference in accumulated snow depth between the model ensemble mean and observed, accumulated snow depth

during the December snow storms (accumulation period of 4–23 Dec 2015). Simulations at sites that are outside of the model’s 95%

confidence interval are in bold.

Ensemble mean difference [modeled 2 observed; cm (%)]

Site name PRISM WRFLP WRFMPP WRFFull

Wynoochee Pass 2118 (247) 2144 (257) 289 (236) 299 (239)
Mount Christie 248 (221) 268 (229) 1 (1) 27 (23)

Lake Connie 248 (221) 279 (234) 269 (230) 271 (230)

Black and White West 266 (228) 289 (237) 265 (227) 251 (221)

Mount Seattle East 234 (214) 269 (228) 220 (28) 216 (26)

Mount Steel 299 (230) 2132 (241) 2102 (231) 2113 (235)

Mount Seattle West 268 (222) 2111 (236) 275 (224) 273 (224)

Black and White East 24 (23) 244 (230) 24 (22) 28 (26)

Anderson Pass East 275 (231) 237 (215) 5 (2) 21 (0)

Anderson Pass West 2148 (247) 2111 (235) 272 (223) 278 (225)

West of Lake Lacrosse 272 (230) 234 (214) 21 (0) 22 (21)

Mount Hopper 24 (10) 241 (216) 225 (210) 231 (212)

Total sites 12.0

Mean difference 263 (224) 280 (231) 243 (216) 246 (217)

Mean absolute difference 67 (25) 80 (31) 44 (16) 46 (17)

Std dev of the errors 47 (16) 38 (12) 39 (14) 40 (14)
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APE (216%), and APW (217%) suggest that the

PRISM climatology values are too low.We also note that

PRISM-estimated total precipitation at the Bucking-

horse SNOTEL site (not used in the development of

PRISM) is also biased low 25% on an annual basis in

WY 2016 when using all precipitation gauges besides

Buckinghorse.

APE, APW, and WLL were located on the wind-

ward side of the Olympic Mountains near the Eel

Glacier and Anderson Glacier, on the banks of a deep

U-shaped valley, referred to as the Enchanted Valley.

Because of the sparse gauge distribution in the

Olympics, and the absence of the Buckinghorse

SNOTEL site during the development of PRISM, the

DEM used to derive PRISM’s topographic facets

(defining windward versus leeward) smoothed the

relatively narrow Enchanted Valley (;4 km; see Daly

et al. 2002, 2008). We speculate that this shifted the

region of maximum precipitation west of the true

crest. However, we cannot conclusively say that the

PRISM values are too low because simulations are

not outside our models’ 95% confidence interval. In

contrast, we note that the WRFMPP simulations of

SWE at APE, APW, and WLL were biased high by

about 8% on average, suggesting the 1.33-km WRF

grid spacing was sufficient to resolve the relatively

narrow valley.

WRFMPP, WRFFull, and WRFLP showed differ-

ences in the directionality of their errors at Mount

Seattle West (MSW) and Mount Seattle East (MSE).

Both of these sites (;950m apart) had the same

nearest WRF grid cell. However, both sites accu-

mulated different amounts of snow (Figs. 6, 7), which

suggests that true snowfall exhibits variability within

a WRF grid cell, and that the overaccumulation

in WRFMPP simulations at MSE (less observed

FIG. 6. Accumulated snow depth between 1 Nov and 23 Dec 2015. Individual ensemble members are shown with thin dotted lines. At

Black and White East and Lake Connie, the evaluation ends on 18 and 22 Dec 2015, respectively. After these dates the poles became

significantly bent toward the camera or buried.
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snowfall) is balanced out by the underaccumulation

at MSW (more observed snowfall). WRFMPP accu-

rately simulated average snowfall within the area of

thisWRF grid cell, which is reflected by comparing the

simulated SWE to the median value from a 1.33-km

spatial domain at both MSE and MSW (Fig. 9). This

highlights the complexity of evaluating gridded pre-

cipitation sources at larger spatial resolutions to

smaller domains (point or 60-m area). See discussion

for more information.

6. Discussion

a. Spatial representativeness of lidar observations to
PRISM and WRF grid cells

There is a significant range in ASO-derived SWE

within a spatial scale of 60, 800 (PRISM grid spac-

ing), and 1333m (WRF grid spacing; Fig. 9). In

general, the SWE distributions were similar across

spatial scales. However, the median values were not

always consistent among different spatial areas. We

found the median SWE value from a 60-m bounding

box was generally higher by about 20–60 cm when

compared to the median value from an 800-m

bounding box. Similarly, we found that the median

elevation within a 60-m bounding box was around

40–80m higher than the elevation within an 800-m

bounding box. When we used the observed lapse rate

and the calculated sensitivity of rain versus snow to

temperature (section 6b), we could not fully explain

the differences in median snow depth values across

spatial scales based on changes in median elevation

alone. We therefore hypothesize that complex in-

teractions between wind, terrain, and vegetation

are responsible for these differences in median

values at different spatial scales rather than solely

FIG. 7. Accumulated snow depth between 4 and 23 Dec 2015. Individual ensemble members are shown in thin dotted lines. Black and

White East and Lake Connie have the evaluations end on 18 and 22 Dec 2015, respectively. After these dates the poles became signif-

icantly bent toward the camera or buried.
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the sensitivity of rain-versus-snow partitioning to

elevation and temperature.

Lake Connie (LC), which sits near the top of a ridgeline,

had the most dramatic difference between the median

ASO-derived SWE values (105cm) and median elevation

(89m) when looking at different spatial scales. The distri-

butions at LC show that both WRFMPP and WRFLP were

more reflective of the median SWE value from the larger

domains (Fig. 9), and therefore, bothWRFLP andWRFMPP

may not be underaccumulating at LC (Figs. 4, 5, 8). In

contrast, simulations of SWE that used PRISM-derived

precipitation agreed with the observed SWE from the me-

dian 60-m bounding box but overaccumulated when com-

pared to themedian values from the larger bounding boxes.

Despite the complexity of evaluating gridded pre-

cipitation products to both point and larger spatial areas,

we highlight that at most locations there was little

change in the evaluation of PRISM,WRFMPP, WRFFull,

and WRFLP at individual sites. Furthermore, there was

little change in the mean differences and mean absolute

differences when moving from the 60-m bounding box

to a larger spatial area (Table 6).

FIG. 8. Percent errors of modeled SWE compared to the median value from the ASO 60-m bounding boxes

at independent snow monitoring sites. Black triangles are scaled based on how much they differ from the

observations. Thick black lines show watershed delineations based on USGS streamflow gauges. Thin lines

represent 600-m contour intervals.
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b. Rain-versus-snow sensitivity

There were significant differences in model perfor-

mance based on the method used for rain-versus-snow

partitioning. WRFMPP indicated a promising path for-

ward in hydrology, as results were as good as or better

than the PRISM simulations, and WRFMPP was able to

simulate changes in rain versus snow at an hourly time

step and was not dependent on using the calibrated

linear temperature threshold for a nonlinear process.

For example, using the output from the microphysical

scheme, we back calculated the Tcrit model parameter

by finding the Tw during events that had a rain frac-

tion between 20% and 80%. Parameter Tw was calcu-

lated using the observed temperature and RH along

with WRF’s pressure (Iribarne and Godson 1981). The

back-calculatedTcrit at the snowmonitoring stations was

normally distributed around 0.18C with a 95% confi-

dence interval that ranged from 22.68 to 2.98C. Param-

eter Tcrit was also dynamic, in that it changed from hour

to hour within a storm. Similar results were found when

we constrained the rain fraction to 30%–70% and when

we used WRF’s temperature and specific humidity to

calculate Tw.

Using a traditional calibration approach for Tcrit

(section 4c), we used a constant Tcrit value of 21.08C

at all locations for both PRISM and WRFLP sim-

ulations. This method was dependent on uniformly

distributed daily total precipitation observations

because the calibration locations only contained

daily observations of precipitation. When the

FIG. 9. Normalized empirical distribution functions (EDF) showing the distribution of SWE within different spatial areas

surrounding the location of the snowmonitoring station. Median SWE values from different spatial areas are independent of the y axis

and are shown at various vertical positions to avoid overlap. We note that at Mount Hopper and Lake Connie, WRFMPP (gold) and

WRFLP (red) overlap.
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calibrated linear temperature threshold was run with

hourly WRF precipitation and compared to the ob-

servations of SWE at the snow monitoring site, we

found a systematic and more significant low bias in

SWE (233%), highlighting that the temperature-

based partitioning method is dependent on the tem-

poral resolution of the precipitation observations

used to calibrate the model (Harder and Pomeroy

2013; Wayand et al. 2016a).

Furthermore, we found that the temperature-based

partitioning method, when combined with the PRISM-

derived estimates of precipitation, could provide an un-

biased estimate of SWE on an annual basis because the

PRISM simulations used the model calibration data for

partitioning. On average, 79% of the weight in the dis-

tribution of PRISM-derived precipitation came from the

four SNOTEL sites. However, the temperature-based

partitioning method exhibited errors in identifying the

phase of the precipitation during individual events, as the

calibration method had compensating errors that pro-

vided an unbiased estimate of SWE [section 5a(2)(i)].

Therefore, PRISM simulations had an advantage over

theWRFLP simulations becauseWRFLP simulations used

independent estimates of precipitation. Therefore, any

differences in the timing of precipitation could lead to

errors in the partitioning.

Furthermore, we note that Tcrit is a highly sensitive

model parameter in simulating SWE in this region. We

found that a 18C (from21.48 to 0.48C) change in theTcrit

model parameter resulted in a difference at the Buck-

inghorse SNOTEL site in over a half a meter (52 cm) of

SWE. A 0.28C change in Tcrit changed peak SWE by

2%–8%. Despite the need for calibration data to de-

termine this model parameter, the sensitivity is also

important to consider when using a distributed hydro-

logic model. For instance, using temperature sensors

that were deployed at elevations ranging from 180

to 1458m, we determined the mean lapse rate to

be 24.58Ckm21 during precipitation events. This is

consistent with previous work (Minder et al. 2010) that

showed lapse rates within the Pacific Northwest are

considerably less than the 26.58Ckm21 often assumed

in hydrologic modeling studies (e.g., Livneh et al. 2013).

This 24.58Ckm21 lapse rate, in conjunction with the

rain-versus-snow sensitivity, shows that an elevation

change of 100m could result in a 4%–16% change in

modeled SWE for that elevation band.

WRF does not require a known lapse rate, and the mi-

crophysical partitioning of rain versus snow does not re-

quire regional calibration. Therefore, we recommend that

future snow model development in maritime environ-

ments focus on assessing the best microphysical scheme

rather than temperature-based partitioningmethods.Here

we only evaluated the Thompson et al. (2008) micro-

physical scheme, but it is promising that in a comparison of

microphysical schemes, the Thompson scheme was found

to perform best in predicting snow across the cold conti-

nental climate of Colorado, United States (Liu et al. 2011).

Furthermore, this microphysical scheme and model setup

helped improve partitioning rain and snow at Snoqualmie

Pass, Washington, especially during cold air intrusions

(Wayand et al. 2016a). We recommend that the snow

depth data presented herein be used along with other

OLYMPEX observations to evaluate howWRF performs

with different physics, and to improve microphysical

schemes, as previous work has shown that different mi-

crophysical schemes show substantial variability in the

elevation at which snow transitions to rain (Frick et al.

2013; Minder and Kingsmill 2013).

c. Sensitivity to the weighting of gauges with PRISM

We tested our decision to use IDW over IDSW to dis-

tribute precipitation with the PRISM annual climatology.

In thismanuscript, we showed results fromusing IDW, as it

resulted in simulations with the lowest mean percent

difference in snow depth (5%) and SWE (21%). We

found that using IDSW resulted in an increase in the

simulated snow depth by 4% and SWE by 6% on average.

However, southern sites (Wynoochee Pass, Lake

Connie, Black and White East, Black and White West)

TABLE 6. Mean differences and mean absolute differences of SWE between different model simulations when using median values of

observed SWE (derived from ASO snow depth and density observations) from different spatial areas.

Model evaluation area PRISM [cm (%)] WRFLP [cm (%)] WRFMPP [cm (%)] WRFFull [cm (%)]

Mean difference

60m 24 (21) 233 (221) 29 (22) 235 (219)

800m 8 (6) 222 (215) 2 (3) 223 (216)

1333m 21 (21) 230 (220) 26 (24) 232 (221)

Mean absolute difference

60m 26 (20) 36 (23) 30 (18) 42 (26)

800m 23 (20) 26 (18) 26 (15) 30 (21)

1333m 27 (18) 34 (22) 19 (13) 34 (23)

OCTOBER 2017 CURR IER ET AL . 2697



were the least affected by the weighting method, differing

by about 0%–2% in SWE. When IDSW was used, Buck-

inghorse shifted from having an average weight of

26%–46%, while the sites that were largely unaffected by

the weighting scheme had little change in their weighting

(;5%). Sites that had a significant difference based on how

we weighted each gauge were less than 10km away from

the Buckinghorse SNOTEL site, while the sites with little

difference were greater than 20km away. When the

Buckinghorse site was removed from the estimates of

precipitation with PRISM (using IDW), the simulation of

snow depth and SWE decreased on average by 7% and

9%, respectively. Since results will vary depending on the

gauge distribution and where precipitation is being pre-

dicted, we encourage future PRISM users to explore the

effect of their weighting scheme.

Furthermore, we also examined using the SNOTEL

sites in combination with only the low-elevation

RAWS and USCRN precipitation gauges because

RAWS gauges use unheated tipping buckets and are

subject to freezing. We found that the mean percent

difference in SWE increased from21% to 6%. Again,

because of the gauge distribution, this decision gave

more weight to the Buckinghorse gauge, providing

similar results to using IDSW.

d. Model sensitivity unique to warm maritime snow
environments

Throughout this study many nontrivial model-forcing

decisions were made to improve model skill. One of the

most sensitive modeling decisions was our choice of long-

wave radiation. We found significant differences in model

performance based on the empirical method chosen for

longwave radiation. Of all possible empirical longwave

decisions from Flerchinger et al. (2009), the Dilley and

O’Brien (1998) clear sky method with the Unsworth and

Monteith (1975) cloud correction method performed best

at Snoqualmie Pass and was also one of the most trans-

ferrable equations in Flerchinger et al. (2009). Other

suggested transferrable longwave parameterizations

simulated either too much or too little incoming

longwave radiation, corresponding to too much or not

enough melt in our model simulations. Furthermore,

we evaluated WRF incoming radiation at the Sno-

qualmie Pass energy balance tower and found biases

in WRF shortwave and longwave radiation to be

greater than empirical estimates and to be in opposite

directions. See appendix B for more details.

Another nontrivial decision was the choice in

wind speed. In this region, we found modeled turbulent

fluxes to be a significant energy input to the snowpack,

because throughout the season both the latent and sensible

heat fluxes could be oriented in the same direction.

Therefore, we found that using the only wind speed mea-

surement within our study domain (Waterhole SNOTEL),

despite being located far away from snowmonitoring sites,

offered better model performance than using wind speed

from WRF.

WRF’s 10-m wind speed at Waterhole was on average

4ms21 greater than theWaterhole observations. Therefore,

we found that the overall low bias with WRFFull com-

pared to WRFMPP was the result of too much melt from

turbulent heat fluxes directed toward the snowpack

rather than errors with incoming radiation (which ten-

ded to offset) or with precipitation and partitioning.

Independent simulations (not shown) illustrated that

when air temperature, specific humidity, and shortwave

and longwave radiation were provided from WRF, but

wind speed was the same as in theWRFMPP simulations

(Waterhole observed wind speed), the overall mean

percent difference in SWE was small, 22% compared

to27%.When the model was run with all meteorological

forcing data (WRFFull), including WRF’s wind speed, the

mean percent difference in near-peak SWE was signifi-

cantly more biased, changing from 22% (WRFMPP)

to 219%. We recommend other models set up in similar

environments pay close attention to choices in incoming

longwave radiation and wind speed.

7. Conclusions

When output from WRF’s microphysical scheme was

used to partition WRF precipitation into rain versus snow

(WRFMPP), simulations of snow depth and SWE were

relatively unbiased. However, errors in near-peak SWE

were outside the model’s 95% confidence interval, at 5 out

of 12 sites, exhibiting that the unbiased mean difference

was the result of compensating errors. Simulations that

used PRISM-derived precipitation with the linear parti-

tioningmethod also had compensating errors leading to an

overall unbiased mean difference. However, PRISM sim-

ulations benefited from using SNOTELprecipitation data,

which were used to calibrate the temperature-based par-

titioning method. WRFLP, which also used the calibrated

partitioning scheme but had independent estimates of

precipitation, was biased low. Since WRFMPP was rela-

tively unbiased, this suggests that WRFLP was biased low

due to partitioning errors, rather than errors with the total

precipitation from WRF. Furthermore, the temperature-

based threshold also exhibited partitioning errors during

individual snowfall events with both WRFLP and PRISM-

based simulations.

When WRF used all meteorological data to run the

hydrologic model (WRFFull), we found thatWRF’s wind

speeds, rather than radiation, precipitation, or parti-

tioning errors, resulted in too much midwinter melt and
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an overall low bias (219%). Therefore, the best simu-

lations of snow depth and SWE with WRF precipitation

resulted from using nearby observations of wind speed

with a partitioning method based on output from the

microphysical scheme (WRFMPP).

Microphysical schemes in atmospheric models are

an active area of research (Jankov et al. 2009; Liu et al.

2011; Minder and Kingsmill 2013), but using the mi-

crophysical scheme output from WRF for pre-

cipitation and to partition rain versus snow is an

attractive path going forward in hydrology for four

reasons: 1) the rain-versus-snow threshold Tcrit, which

is a highly sensitive model parameter in this environ-

ment does not have to be known or calibrated; 2) the

microphysical scheme provides a more realistic ap-

proach to simulating the precipitation phase than

simple temperature thresholds; 3) the lapse rate dur-

ing precipitation events (24.58Ckm21) differs from

the commonly assumed 26.58Ckm21 and does not

have to be known a priori; and 4) WRF precipitation

and rain-versus-snow partitioning can be derived

anywhere, even in watersheds with no observations.
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FIG. A1. The ASO lidar distribution of snow depth values within a 60-m bounding box and the snow depth

pole measurements, with their associated uncertainty, on 8–9 Feb 2016. Sites that do not have blue bars

(dotted lines) shown are sites with no snow depth measurement at this time because the poles were buried

under snow.
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APPENDIX A

Lidar Snow Depth Comparison to Time-Lapse Snow
Depth

We compared ASO snow depth values from 60-m

bounding boxes around our snow depth pole measure-

ments. We found that both measurements generally

agreed or were within each other’s interquartile (ASO)

or uncertainty range (snow depth poles; Fig. A1). At

many sites, such as Mount Seattle East, Mount Seattle

West, and West of Lake Lacrosse, the difference from

the snow depth pole and the median ASO value was less

than 15 cm. At other sites, more significant differences

appeared. For instance, at Mount Hopper, camera im-

ages showed a significant snowdrift, which was formed

as a result of preferential deposition of precipitation.

Since the snow depth poles were located outside the

snowdrift, the median ASO value was higher than the

snow pole measurement by 84 cm in February and

173 cm in March. In contrast to this, at Black and White

West the ASO snow depth maps indicated that our snow

depth poles were located within a snowdrift, and

therefore the median ASO value was 42 cm lower in

February and 60 cm lower in March when compared to

the snow depth pole measurement.

At these two sites, we found that the median ASO

value from a larger spatial area (.60-m bounding

box) was more similar to the median ASO value from

the 60-m bounding box than it was to the snow depth

pole measurement. This indicated to us that the me-

dian ASO value within a 60-m bounding box was a

better representation of the snow within this region

than the snow depth poles alone. Furthermore, by

March many snow depth poles contained significant

uncertainty in their measurements because they be-

came bent or buried with snow. Therefore, we chose

to compare our model simulations with different

sources of precipitation, on an annual basis, to the

median March ASO value within a 60-m bounding

box, rather than directly with the snow depth pole

measurements.

APPENDIX B

Model Forcing Variables

PRISM, WRFLP, and WRFMPP simulations all use

specific humidity q fromWRF and from observations

of RH (converted to q using observed temperature

and WRF pressure), along with different density

decisions, to form a snow depth/SWE ensemble. The

specific humidity decisions in the PRISM, WRFLP, T
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and WRFMPP model configurations were carried into

the derivation of shortwave and longwave radiation.

Precipitation was uniformly distributed over each

day in both PRISM and WRFLP to be consistent with

the calibration methodology, which relied on daily

resolution precipitation data. PRISM, WRFLP, and

WRFMPP model simulations used empirical deriva-

tions for shortwave and longwave radiation, as these

performed better than WRF at the nearby Snoqualmie

Pass, Washington, energy balance tower. For instance,

WRF was biased 160Wm22 in shortwave radiation,

while the mountain microclimate simulation model

(MTCLIM Thornton and Running 1999; Bohn et al.

2013) was biased only 123Wm22. These results were

consistent with Lapo et al. (2017), which showed that

WRF was biased higher than MTCLIM over sites in

California. Similarly, WRF was biased greater in long-

wave radiation (217Wm22) than our empirical deriva-

tion (27Wm22); however, these biases were in the

opposite direction of the shortwave radiation biases.

Furthermore, wind speed was generally taken from the

nearest observational site (Waterhole SNOTEL site),

exceptwhenwind speedwas taken fromWRF (WRFFull).

In WRFFull we scaled the wind speeds U using the

Prandtl–von Kármán universal velocity distribution

equation (Dingman 2008):

U5
1

k
3U*3 ln

�
z2 z

d

z
o

�
, (B1)

where k is the von Kármán constant, U* is the fric-

tional velocity taken fromWRF, z is the measurement

height at which the hydrologic model has forcing data

prescribed, zo is the time-varying surface roughness

length taken from WRF, and zd is the zero-plane dis-

placement height. In this manuscript, we took zd to be

the simulated snow depth fromWRF’s embedded land

surface model (Noah).

All model forcing data for SUMMA is summarized in

Table B1.

APPENDIX C

Adjusted Model Parameters

Table C1 shows adjusted model parameter values.

Table C2 shows adjusted new snow density and com-

paction model parameter values.

TABLE C1. Adjusted model parameter values, from default (see supplemental material). These model parameter values are held

constant in each run. The albedo decay rate was fit to observations of albedo at Snoqualmie Pass. The default maximum snow albedo

parameter value (0.84) fit the observations at Snoqualmie Pass. Vegetation parameters were adjusted to simulate an open,

nonvegetated area.

Model parameter name Model parameter description Adjusted value

tempCritRain Tcrit (8C) Critical temperature where precipitation is rain/snow 21.0

albedoDecayRate (s) Albedo decay rate 500 000

heightCanopyTop (m) Height of top of the vegetation canopy above the ground surface 0.01

heightCanopyBottom (m) Height of bottom of the vegetation canopy above the ground surface 0.001

winterSAI (m2m22) Stem area index prior to the start of the growing season 0.01

summerLAI (m2m22) Maximum leaf area index at the peak of the growing season 0.5

TABLE C2. Adjusted new snow density and compaction model parameter values. These model parameter values vary within each

ensemble, along with different sources of q for the PRISM, WRFLP, WRFMPP, and model calibration simulations. In WRFfull these snow

density model parameters also vary but q is only taken from WRF.

Value

Model parameter

Wayand et al.

(2016b) (rw)

Hedstrom and Pomeroy (1998)

and Anderson (1976) (rHPA)

newSnowDenMin (minimum new snow density; kgm23) 100 67.92

newSnowDenMult (multiplier for new snow density; kgm23) 50 51.25

newSnowDenScal (scaling factor for new snow density; K) 1 2.59

denScalOvrbdn (density scaling factor for overburden

pressure; kg21 m3)

0.02 0.023

tempScalOvrbdn (temperature scaling factor for overburden

pressure; K21)

0.06 0.08
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