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ABSTRACT

In this study, a nonparametricmethod to estimate precipitating ice frommultiple-frequency radar observations is

investigated. Themethod does not require any assumptions regarding the distribution of ice particle sizes and relies

on an efficient search procedure to incorporate information from observed particle size distributions (PSDs) in the

estimation process. Similar to other approaches rooted in optimal-estimation theory, the nonparametric method is

robust in the presence of noise in observations and uncertainties in the forwardmodels. Over 200 000 PSDs derived

from in situ observations collected during the Olympic Mountains Experiment (OLYMPEX) and Integrated

Precipitation andHydrology Experiment (IPHEX) field campaigns are used in the development and evaluation of

the nonparametric estimation method. These PSDs are used to create a database of ice-related variables and

associated computed radar reflectivity factors at the Ku, Ka, and W bands. The computed reflectivity factors are

used to derive precipitating ice estimates and investigate the associated errors and uncertainties. The method is

applied to triple-frequency radar observations collected during OLYMPEX and IPHEX. Direct comparisons of

estimated ice variables with estimates from in situ instruments show results consistent with the error analysis.

Global application of the method requires an extension of the supporting PSD database, which can be achieved

through the processing of information from additional past and future field campaigns.

1. Introduction

Estimates of precipitation derived from single-frequency

radar observations are inherently uncertain. This is be-

cause to express accurately the distribution of the

number of precipitation particles in an observation

volume as a function of their sizes more than one vari-

able is necessary, whereas single-frequency radars pro-

vide only one reflectivity observation per volume. Solid

precipitation is characterized by an additional type of

significant uncertainty stemming from the fact that

electromagnetic-scattering properties of solid precipi-

tation cannot be uniquely expressed as a function of

their equivalent sizes (defined as the size of an equiva-

lent spherical raindrop resulting from melting the solid

precipitation) (Kuo et al. 2016). Collocated dual- and

triple-frequency radar observations may be effectively

used to mitigate these uncertainties because reflectivity
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observations at additional frequencies may be used to

estimate explicitly an additional parameter.

In this study, we investigate the estimation of pre-

cipitation above the freezing level in both winter and

summer storms from airborne collocated triple-frequency

radar observations. The frequencies of the radar observa-

tions are 13.91GHz (Ku band), 35.56GHz (Ka band),

and 94.0GHz (W band). Previous studies showed

that different ice particles have different signatures in

dual-wavelength-reflectivity-ratio (DWR) space (Kneifel

et al. 2011). To be specific, when triple-frequency ra-

dar observations are available, two independent DWRs,

where theDWR for two frequencies l1 and l2 is defined as

DWR
l1,l2
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can be defined. Kneifel et al. (2011) showed that dif-

ferent particle shapes have different signatures in the

DWRKuKa–DWRKaW plane. Subsequent observational

and modeling studies (Kulie et al. 2014; Kneifel et al.

2015; Leinonen and Szyrmer 2015) demonstrated that

the triple-frequency signatures predicted by the theo-

retical calculations have practical relevance and may be

linked to cloud microphysical processes such as riming

and aggregation. Although not every single (DWRKuKa,

DWRKaW) combination can be uniquely associated

with an ice particle type, it is expected that the use of

triple-frequency radar observations facilitates the deri-

vation of more accurate estimates of bulk properties

(e.g., equivalent water content andmass mean diameter)

of precipitating ice.

The method used in this study to estimate ice from

triple-frequency radar observations is based on a large

dataset of ice particle size distributions (PSDs) derived

from in situ observations collected during field campaigns

and an ensembleKalman smoother (EnKS;Evensen 2006)

embedded into a forward attenuation correction pro-

cedure. The PSDs are used to calculate triple-frequency

radar reflectivity factors that are used by a statistical

procedure to inversely relate reflectivity observations to

PSDs. The electromagnetic-scattering properties of ice

particles are derived from publicly available scattering

databases (Liu 2008; Lu et al. 2016). Details are pro-

vided in section 2 below. A particular property of the

EnKS that may be used to derive efficient and accurate

estimates from multiple-instrument observations is that

the observations can be processed sequentially (Evensen

2006). This property can be exploited to limit the number

of calculations needed to derive the estimates by process-

ing the observations characterized by low computational

cost (e.g., radar observations not affected by multiple

scattering) first and then narrowing down the range of

possible solutions before processing observations char-

acterized by high computational costs (e.g., radar ob-

servations affected by multiple scattering). Moreover,

because triple-frequency reflectivity values are calculated

for every PSD in the large dataset, a cross-validation ap-

proach may be devised to characterize the uncertainties of

the ice estimates. Specifically, the PSD and associated

database can be randomly split into two subsets. The

first subset is used to provide the information needed by

the estimation procedure, and the second is used for

evaluation. That is, the reflectivity factors in the second

dataset are used to derive multiple-frequency radar es-

timates of ice properties. These estimates are compared

with the reference values (derived directly from the

PSDs in the second dataset), and various statistical

scores (correlation coefficient, relative bias, etc.) may be

derived. We employ this strategy to characterize the

performance of the nonparametric strategy in section 3.

Similar to more traditional approaches that are based

on optimal-estimation theory (e.g., Delanoë and Hogan

2008; Grecu et al. 2011; Battaglia et al. 2016), the non-

parametric method is robust in the presence of noise in

the observations and uncertainties in the underlying

forward models. However, unlike those approaches, this

method does not require explicit assumptions on the

PSD used in the forward models and does not require an

explicit description of the ‘‘a priori’’ joint distributions

of PSD properties. The global application of the non-

parametric method requires global PSD information,

but this is a requirement for the optimal-estimation-

theory approaches of Delanoë andHogan (2008), Grecu

et al. (2011), and Battaglia et al. (2016) as well.

In section 4, the estimation method formulated in the

study is applied to triple-frequency radar observations

collected during the Olympic Mountains Experiment

(OLYMPEX; Houze et al. 2017) and the Integrated

Precipitation and Hydrology Experiment (IPHEX;

Barros et al. 2014). Results are consistent with those

derived in the cross-validation analysis and are in good

agreement with collocated in situ measurements. A

summary and conclusions are provided in the last sec-

tion of the paper.

2. Method

a. Particle size distributions

An essential concept in relating various microphysical

properties of falling ice particles to radar observations is

the PSD (Sekhon and Srivastava 1970). In mathematical

terms, the PSD is the derivative of the concentration of

ice particles smaller than a size with respect to that size

(Sekhon and Srivastava 1970). Although the gamma
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function was found to represent well the variability

of observed PSDs (Heymsfield et al. 2002, 2018), in

this study we do not use analytical functions to relate

PSDs to observed reflectivities. Instead, we use di-

rectly observed PSDs to calculate the associated re-

flectivities at the Ku, Ka, and W bands using accurate

electromagnetic-scattering models and use an efficient

database-navigation procedure to inversely relate ob-

served radar reflectivities to PSDs. The PSDs are de-

rived from measurements by a two-dimensional stereo

probe (2D-S; Lawson et al. 2006) and two orthogonally

mounted High Volume Precipitation Spectrometers

(HVPS-3) on board the University of North Dakota

(UND) Cessna Citation airplane during OLYMPEX

(Houze et al. 2017) and IPHEX (Barros et al. 2014)

using the method of Heymsfield et al. (2018). The par-

ticle number concentration normalized by bin width is

specified for 41 particle size bins. The bin centers vary

from 50mm to 2.75 cm. The number concentrations for

particles larger than 1.0mm are specified from HVPS-3

observations, while the number concentrations from

particles smaller than 1.0mm are derived from 2D-S

observations.

The diameter of the minimum enclosing circle is used

to define the size of an ice particle (Wu andMcFarquhar

2016). It should be mentioned that the size of the ob-

served particles can be underestimated if the particle’s

maximum dimension is not oriented with the imaging

plane, or if the image extends beyond the edge of the

picture. Particle size can also be overestimated if a

particle is poorly focused, breaking apart, or if there are

coincident particles in the sample area. Despite these

limitations, the PSDs derived from in situ observations

are extremely valuable in the development and evalua-

tion of methodologies to estimate ice properties from

radar observations.

The PSD data used in this study are available from the

OLYMPEX and IPHEX data portals. The PSD data are

integrated to derive the associated equivalent reflectiv-

ity factors at Ku, Ka, and W band. This procedure is

described next.

b. Radar backscattering

The main challenge in quantifying the electromagnetic-

scattering properties of realistic snowflakes and

ice particles at microwave frequencies is that they

exhibit complex shapes that make the numerical so-

lutions to Maxwell’s equations so computationally

expensive that they were almost intractable until a

few years ago. Nevertheless, several publicly avail-

able ice-scattering databases have been developed

over the years (Liu 2008; Lu et al. 2016; Kuo et al. 2016). In

this study, we use the Liu (2008) and Lu et al. (2016)

databases. The equivalent radar reflectivity factor is de-

rived as

Z5
l4

jK
w
j2p5

�
41

i51

s
b
(D

i
)N(D

i
) , (1)

where l is the wavelength, Kw is the dielectric factor of

water, sb(Di) is the average backscatter cross section for

size bin number i, and N(Di) is the associated concen-

tration of particles.

Given that the backscatter cross section of an ice

particle is muchmore strongly related to its mass than to

its maximum diameter (Kuo et al. 2016), the backscatter

variable in Eq. (1) is expressed as a function of the as-

sociated mass mi(Di) rather than the associated Di.

Heymsfield et al. (2010) showed that although the re-

lationships between the mass and the maximum di-

mension of a snowflake can vary significantly as a

function of the type of the cloud in which the snowflake

is observed, a mass–dimensional relationship of the type

m 5 aDb with a ’ 0.0061 and b ’ 2.05 (in cgs units)

works well in a broad range of conditions in midlatitude

storms. Therefore, the relationship m 5 0.0061D2.05 is

used to convert the PSD size bins in Eq. (1) to equivalent

mass bins. The ice particles from the scattering databases

of Liu (2008) and Lu et al. (2016) are assigned to the PSD

mass bins and the average backscatter and extinction

cross sections as well as the associatedmass are calculated

for every bin. Then, an interpolation procedure is applied

to determine the backscatter and extinction cross sections

corresponding to the mass bin centers. The interpolation

functions are second-order polynomials that relate the

logarithm of the particle mass to the logarithm of the

backscatter and extinction sections.

Shown in Fig. 1 are the backscatter and extinction

sections as a function of the particle mass for three types

of particles: Liu (2008) aggregates, Lu et al. (2016) ag-

gregates, and Lu et al. (2016) graupel. For the brevity of

notation, Liu (2008) particles are marked as ScatDB in

Fig. 1, and Lu et al. (2016) particles are marked as PSU.

The impact of the assumed particle on estimates is

studied in section 3, but meanwhile it is useful to note

that the backscatter and extinction sections tend to de-

pend on the particle type. As expected, the graupel

particles are characterized by larger backscatter sections

than the other two (less dense) types of particles. Also,

the Liu (2008) aggregates, which tend to be slightly denser

than Heymsfield et al. (2010) aggregates (i.e., m 5
0.0061D2.05), generally exhibit larger backscattering than

the Lu et al. (2016) aggregates. This is not surprising given

that Lu et al. (2016) aggregates tend to be significantly

less dense than those of Heymsfield et al. (2010). It is

interesting to note that the Rayleigh–Gans-based theory
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of Westbrook et al. (2006, 2008) provides reasonable

backscatter estimates, that is, close to the backscatter

sections of Liu (2008) and between the Lu et al. (2016)

graupel and Lu et al. (2016) aggregates backscatter

sections. Also, note that the polynomial functions fit

almost perfectly the existing backscatter and extinction

data and provide a reasonable extrapolation for the

mass bins for which calculations do not exist (i.e., par-

ticles with a liquid-equivalent-mass diameter that is

larger than 3.5mm).

Results shown in Fig. 1 are derived while assuming

random orientation of particles. Recent work that is

based on the analysis of observations from the Global

Precipitation Measurement Microwave Imager sug-

gests that significant particle orientation occurs near

convective outflow regions (Gong and Wu 2017). Al-

though from the radar remote sensing perspective,

particle orientation is important, there is too little

particle-orientation-related information in the obser-

vations considered in this study to reliably quantify or

account for it.

Once the backscatter and extinction properties are

determined for each size bin, the integration of PSDs to

determine the associated reflectivity at Ku, Ka, and W

bands is straightforward. However, the inverse opera-

tion (i.e., determining various PSD descriptors from a

triplet of Ku-, Ka-, and W-band reflectivity observa-

tions) is not straightforward because the same reflec-

tivity triplet can be reproduced by multiple PSDs.

Delanoe et al. (2014) showed that normalizing the re-

flectivity factors and the ice water contents (IWC, de-

fined as the mass integral over the entire PSD) by a scale

factor Nw significantly reduces the spread in reflectivity

versus IWC relationships. It follows that any collection

FIG. 1. Averaged ice particle (top) backscatter cross sections and (bottom) extinction cross sections at (left) Ku, (center) Ka, and (right)

W bands, plotted as functions of the particle mass. Results from four types of particles are shown: 1) Liu (2008), symbolized by blue stars

and labeled as ScatDb; 2) Lu et al. (2016) aggregates, symbolized by red stars and labeled as PSU Agg.; 3) Lu et al. (2016) graupel,

symbolized by blue diamonds and labeled as PSU Graup.; and 4) Westbrook et al. (2006) (green stars labeled as RG) particles whose

backscatter properties were derived using the formula derived by Westbrook et al. (2008) from Rayleigh–Gans calculations. The green

lines represent the fitted analytical formulas to the Liu (2008) particles.
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of PSDs that exhibits large variability in Nw is charac-

terized by ambiguities in the associated reflectivity fac-

tors. The scale factor Nw is proportional to the ratio of

the IWC to the fourth power of the mean mass diameter

Dm and may be readily derived from the PSD data

(Delanoe et al. 2014).

Shown in Fig. 2 are contoured frequency-by-altitude

displays (CFADs) of the logarithm of the scale factor

and of the mass mean diameter derived using all PSD

data collected during OLYMPEX. The method to de-

rive the PSD parameters from the cloud probes is de-

scribed in Heymsfield et al. (2004). As is apparent in

Fig. 2, there is significant variability in the distribution of

Nw. Also, the scaling factor tends to increase with height,

while the mass mean diameter generally decreases with

height. This is consistent with the findings of Delanoe

et al. (2014). In this study, unlike in the approach of

Grecu et al. (2011), we do not attempt to explicitly es-

timate Nw and use Nw-dependent parameterized re-

lationships to estimate the ice water content and the

mass mean diameter from reflectivity observations, but

instead use a nonparametric approach akin to ensemble

Kalman smoothing. This is explained next.

c. Nonparametric estimation

Tomitigate ambiguities in the observations, geophysical

estimation algorithms traditionally rely on two strategies.

One is the use of databases of state variables and associ-

ated observations, as well as statistical methods, to relate

the observations to the state variables. The other is the

use of forward physical models between state variables

and their associated observations and optimization

methods that maximize the agreement between the

forward models and observations while penalizing dis-

crepancies between the estimates and their climatology.

Our approach falls within the first category. A widely

used formulation in this category is the Goddard

profiling algorithm (GPROF; Kummerow et al. 2015).

Unlike GPROF, our method uses a procedure that is

formally identical to the EnKS (Evensen 2006) to derive

estimates that are based on the agreement between ac-

tual observations and the observations in the database.

In specific terms, an efficient range search (Agarwal

and Erickson 1999) is carried out to find all of the entries

in the PSD database characterized by triple-frequency

observations within 1.5 dB from the actual observations.

The range search is implemented using hierarchical data

structures called ‘‘ball-trees’’ (Liu et al. 2006). The ef-

ficiency of the range search stems from the fact that only

subtrees that intersect the 1.5-dB sphere centered on the

observations need to be explored. Whether the in-

tersection of a subtree with the 1.5-dB sphere results in a

nonvoid set may be readily determined without actually

evaluating the distances between all of the points in the

subtree and the ball spheres (Liu et al. 2006). If the range

search returns fewer than 50 records in the database, we

relax the search condition to determine the 50 records

closest to the observations. The number 50 was established

using a sensitivity analysis. Specifically, we considered

1000 records and found that while estimates are not

significantly different, the computational time increased

by almost a factor of 2.0. Once the database records

within 1.5 dB of the observations (or the 50 records

closest to the observations) are determined, an EnKS is

applied to derive estimates of various PSD-related var-

iables (mass, mass mean diameter, calculated specific

attenuation, etc.). That is, given the set of PSD-related

variables x and associated observations y produced by

the search, one can use a simple linear regression to

investigate the relationship between perturbations in y

and x (Anderson 2003). Mathematically, perturbations

dx and dy are related through

dx5Cov(x, y)Cov(y, y)21
dy , (2)

whereCov(x, y) is the covariance of xwith y andCov(y, y)

is the covariance of y with itself. The dx adjustment that

makes y equal to the actual observations is

dx
adj

5Cov(x, y)Cov(y, y)21(y
obs

2 y) , (3)

where yobs is the observation vector and y is the average

of y. Note that Eq. (3) is formally identical to the EnKS

update (Evensen 2006) if the observation and modeling

uncertainties are included in y. This is the reason why

the computed reflectivities in the database are perturbed

through the addition of random noise with mean 0.0 and

standard deviation 1.0 dB. It should be mentioned that

the magnitude of uncertainties in the computed re-

flectivities may be larger than considered here. How-

ever, with an exception, instead of increasing the

standard deviation of the perturbed observations, in the

next section, we explicitly investigate the impact of un-

certainties in the computed reflectivities by assuming

one type of particle in the database creation and de-

riving estimates from reflectivities computed using a

potentially different type of particles. In addition, we

also investigate the impact of supercooled cloud water

on attenuation correction.

Given that EnKSs are Bayesian estimation methods,

and Eq. (2) is an EnKS that is based on a particular type

of localization (Petrie and Dance 2010), the non-

parameteric estimationmethod formulated in this study,

henceforth referred to as nPEnKS, is a quasi-Bayesian

method. The database of PSDs and associated re-

flectivity used in nPEnKS will be referred to as the
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a priori database although its use is not the same as in a

fully Bayesian estimation algorithm (Kummerow et al.

2015). At the most fundamental level, however, no sig-

nificant differences between the two approaches are

expected. Nevertheless, nPEnKS is expected to be more

flexible when applied to complex observations. This is

because, as mentioned before, the observations can be

processed sequentially (Evensen 2006), which allows for

the derivation of preliminary estimates on the basis of

partial observations (e.g., Ku- andKa-band observations)

and the computation of more complex observations

(W-band observations affected by multiple scattering,

radiometer observations, etc.) on the fly and their in-

clusion in the derivation of the final estimates. We men-

tion that the application of the multiple-scattering radar

model of Hogan and Battaglia (2008) does not suggest

significant multiple scattering in the observations used in

this study, but for the application of nPEnKS to satellite

observations the inclusion of a multiple-scattering model

in the framework is necessary (Grecu et al. 2016).

Note that because the simulated reflectivities in the

database are not affected by attenuation, reflectivity

observations yobs are corrected for attenuation before

being used in Eq. (3). In our implementation, this is

achieved through a gate-by-gate attenuation correction

procedure. The attenuation correction accounts for at-

tenuation due to ice particles, water vapor, and cloud

water. The attenuation by water vapor and cloud water

is explained in section 4. The attenuation due to ice

particles involves an iterative process. As previously

mentioned, the attenuation associated with the observed

PSDs in the database is calculated and saved in the

augmented PSD scattering database. This allows for

the calculation of two-way integrated attenuation from

the top of the atmosphere to the center of the radar gate

being processed. The two-way integrated attenuation is

added to the reflectivity observations, and IWC,Dm, and

the attenuation at all frequencies are iteratively derived.

The attenuation from the upper boundary of the current

gate to its center is initially assumed to be zero, and

IWC, Dm, and the attenuation are derived. In the next

iteration, potentially different IWC, Dm, and attenua-

tion estimates are derived because new estimates of the

attenuation within the radar gate are available. The

process is repeated until convergence is achieved. This

type of attenuation correction may become unstable if

carried out through the melting layer, but it works

properly if it is limited to the ice phase only.

FIG. 2. (left) CFADs of (left) the logarithm of the scale factorNw and (right)Dm for PSD derived fromOLYMPEX

in situ observations.
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To predict the particle type using the range search

method, for each PSD derived from in situ observa-

tions we compute three sets of associated Ku-, Ka-, and

W-band reflectivity (i.e., one set per particle type). A

particle-type identifier is included in the merged PSD

reflectivity dataset, and when the range searches are

performed each PSD within the search domain is as-

sociated with a particle type. The most likely particle

type is determined through weighted majority voting

(Hastie et al. 2009), where the weights are determined

as the probability of the differences between the ob-

served and computed reflectivities, assuming that these

differences are governed by a multivariate normal

distribution with mean 0.0 and standard deviation

1.0 dB.

3. Uncertainty analysis

The explicit existence of a database of PSD and

associated reflectivity factors makes it straightfor-

ward to investigate the uncertainty associated with

our multiple-frequency estimation method. This is be-

cause, as previously mentioned, the database may be

randomly separated into two disjoint subsets and used

for cross-validation evaluation. That is, one set is used to

provide the a priori (background) information [i.e., x

and y in Eq. (3)] while the other set is used to provide the

observations yobs and the true PSD parameters associ-

ated with these observations.

As is apparent in Fig. 2, the Nw distribution strongly

depends on the temperature. We therefore include the

temperature as a parameter in the range searchmeant to

find the records in the PSD-reflectivity database similar

to the reflectivity observations in the evaluation data-

base. Frequency contour plots of IWC andDm estimated

from Ku-only reflectivity observations relative to their

true distributions are shown in Fig. 3. Results in Fig. 3

are derived using PSD data from OLYMPEX and

assuming that all particles are Liu (2008) aggregates.

Despite significant scatter, there is good agreement be-

tween the estimates and the reference variables even

when Ku-only reflectivity observations are used in the

estimation. The scatter decreases and the agreement

improves when the Ka- and the Ka- and W-band re-

flectivity observations are used in the estimation. This is

shown in Figs. 4 and 5. Three performance parameters—

that is, the cross-correlation coefficient (CC), the nor-

malized root-mean-square error (NRMSE), and the

normalized mean error (NME) (Wilks 2011)—that de-

scribe the agreement between estimated IWC and Dm

and their true values are reported in Table 1. As is ap-

parent in Table 1 and consistent with Fig. 3, there is little

improvement with the inclusion of the Ka-band obser-

vations in the estimation method, although there is

FIG. 3. Estimated (left) IWC and (right) Dm derived from computed Ku-band reflectivity observations vs the

respective true IWC and Dm used in the observations synthesis. The PSD data used in the computation of the

reflectivities are derived from aircraft observations in OLYMPEX.

NOVEMBER 2018 GRECU ET AL . 2611

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/57/11/2605/3595514/jam

c-d-18-0036_1.pdf by guest on 24 June 2020



significant improvement when estimates are derived

from triple-frequency observations. This is rather a

statistical artifact that is due to the fact that there are no

sampling errors in the estimation process, the inversion

and the evaluation PSDs being drawn from the same

distribution. To test the robustness of the nonparametric

approach, we perturb the computed reflectivity with

random noise with mean 0.0 and standard deviation

3.0 dB and repeat the calculations shown in Fig. 5 and

described in the bottom row of Table 1. Results indicate

FIG. 4. As in Fig. 3, but both Ku- and Ka-band reflectivity observations are used in the estimation.

FIG. 5. As in Fig. 3, but triple-frequency reflectivity observations are used in the estimation.
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an increase in the NRMSE by about 30% for both the

IWC and Dm. Similarly, the correlation coefficients de-

creases by about 8%for both variables, but the bias is

still negligible for both variables.

In real applications, however, it is expected that

single-frequency estimates will not be as accurate as the

results in Fig. 3 suggest. This is because the distribution

of PSD parameters is known to vary significantly both

seasonally and geographically (Delanoe et al. 2005,

2014) and automatically determining the most appro-

priate distributions of PSDs in the inversion database

may be difficult. Shown in Fig. 6 are CFADs of the

logarithm of the scale factor and of the mass mean di-

ameter derived using all PSD data collected during

IPHEX. As is apparent in Fig. 6, and consistent with the

findings of Delanoe et al. (2005, 2014), there are signif-

icant differences in the vertical distribution of Nw and

Dm relative to the OLYMPEX distributions. It is,

therefore, expected that application of the estimation

method driven by OLYMPEX inversion information to

IPHEX-calculated reflectivity observations will result in

poorer performance. The three statistical scores (CC,

NRMSE, and NME) of such an evaluation are reported

in Table 2. Relative to the results in Table 1, poorer

performance (i.e., lower correlations, larger random

errors, and even significant biases) is apparent in

Table 2. However, the performance is satisfactory for

the triple-frequency estimates. The distributions of es-

timates as a function the true values are shown in Fig. 7.

It may be seen in Fig. 7 that while the estimates are

TABLE 1. Statistical scores quantifying the agreement between estimates and the true values. Scores include the coefficient of corre-

lation, normalized root-mean-square error, and normalized mean error. Results are derived by drawing the a priori and the validation

subsets from the OLYMPEX dataset.

IWC Dm

Obs CC NRMSE (%) NME (%) CC NRMSE (%) NME (%)

Ku 0.80 60.07 0.16 0.84 53.78 0.11

Ku, Ka 0.81 58.43 20.73 0.84 54.40 0.31

Ku, Ka, W 0.87 49.20 21.16 0.87 49.75 0.10

FIG. 6. As in Fig. 2, but for IPHEX observations.
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strongly correlated with the true variables, they are also

biased, especially at the low end of the distribution. This

is because the DWR signature of small particles may be

dominated by noise and not have a significant impact on

the estimates. In these conditions, estimates are likely

to be affected more by the climatology of PSDs in the

inversion database than by the DWR values. Since

ice particles during OLYMPEX tended to be gener-

ally smaller than in IPHEX, IPHEX estimates with

OLYMPEX a priori information are characterized by

underestimation of the mass mean diameter and over-

estimation of the ice water content. Nevertheless, biases

are significantly smaller when all three frequencies are

used.

The impact of uncertainties in the scattering proper-

ties may be simply investigated by assuming a certain

type of particle in the generation of the inversion PSD

reflectivity database and a potentially different type of

particles in the generation of the evaluation database.

Since the scattering properties of three types of particles

(see Fig. 1) are readily available, nine combinations of

inversion–evaluation databases can be investigated. The

biases associated with uncertainties in the particle types

are given in Table 3. Every entry in the table (which is

derived exclusively using OLYMPEX PSDs) is associ-

ated with a particle type in the calculation of the re-

flectivity observations used in the evaluation and a

potentially different particle type assumed in the gen-

eration of the inversion PSD-reflectivity database. For

example, the estimated bias associated with Lu et al.

(2016) graupel particles, when assuming that they are

Liu (2008) aggregates (ScatDB), is specified in the third

position of the first row of Table 3 (i.e., 10.41%). From

the results in Table 3, it may be concluded that estimates

that are based on ScatDB (Liu 2008) a priori information

work satisfactorily for both denser and less dense

TABLE 2. As in Table 1, but drawing the a priori information from the OLYMPEX dataset and the validation data from the IPHEX

dataset.

IWC Dm

Obs CC NRMSE (%) NME (%) CC NRMSE (%) NME (%)

Ku 0.67 78.77 30.236 0.75 68.74 211.20

Ku, Ka 0.72 72.89 29.436 0.76 68.35 213.130

Ku, Ka, W 0.85 53.96 14.033 0.83 58.26 210.133

FIG. 7. As in Fig. 5, but for observations computed from IPHEX PSDs and using OLYMPEX PSDs in the esti-

mation process.
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particles [i.e., Lu et al. (2016) graupel and Lu et al. (2016)

aggregates].

To investigate the performance of the particle-type

classification procedure described in the previous sec-

tion, we calculate the reflectivity associated with the

OLYMPEX PSDs for all the three types of particles in

Fig. 1 and include them in the same PSD–reflectivity

database. The database is randomly split into two

subsets. One subset is used to provide the inversion

relationships, and the other is for validation. The con-

fusion matrix of the classification procedure is reported

in Table 4. That is, the distribution of predicted particle

types as a function of their true type is given in the three

columns of a given row. If the classification were perfect,

the elements on the top-down and left–right diagonal

would be 100%. As is apparent in Table 4, the ScatDB

(Liu 2008) particles are the most difficult to classify

correctly. At the same type, these are the particles as-

sociated with the smallest biases (see Table 3) when

incorrectly used. An interpretation of the results in

Table 3might be that the classification of ice particles on

the basis of triple-frequency radar observations is more

difficult and less accurate than has been suggested in

previous studies (e.g., Kneifel et al. 2011). However, the

results here should be interpreted as a lower bound,

because the magnitude of the noise added to the ob-

servations is significant. Also, the three types of particles

considered in this study, although realistic, do not cap-

ture the entire spectrum of particle shapes and their

associated scattering properties. Furthermore, different

types of particles may occur within the same PSD.

Another source of uncertainty in the estimates is the

liquid cloud water. Liquid cloud water may significantly

attenuate the observations at Ka and W bands and

needs to be accounted for in the estimation procedure.

The challenge in accounting for cloud water attenuation

in the estimates stems from the fact cloud water is

strongly connected to a large variety of synoptic, me-

soscale, and microphysical processes and can occur as

high as 3–4km above the freezing level (Matejka et al.

1980). This makes the development of reliable param-

eterizations difficult. The analysis of in situ observations

from OLYMPEX and IPHEX shows that 70% of non-

zero ice water content observations are below 0.1 gm23.

We, therefore, investigate the sensitivity of the IWC

estimates with respect to a 1.0-km-deep layer of cloud

water of magnitude 0.1 gm23. That is, we just subtract

the attenuation due to 1.0 km of 0.1 gm23 of cloud water

from the triple-frequency reflectivity observations and

perform the estimation. Results show an underestimation

of 7.0%. In a similar way, an overcorrection of cloud

water attenuation results in a positive bias of 4.0% per

0.1 gm23 km21.

4. Application to IPHEX and OLYMPEX
observations

The observations used in evaluating the method for-

mulated in this studywere collected during IPHEX (Barros

et al. 2014) and the joint Olympic Mountains Experiment

and Radar Definition Experiment for Aerosol–Cloud–

Ecosystem (ACE) field campaign (OLYMPEX/RADEX;

Houze et al. 2017). The evaluation and refinement of the

current satellite precipitation estimation algorithms for

the Global Precipitation Measurement Mission (GPM;

Skofronick-Jackson et al. 2017), as well as the develop-

ment of new algorithms for future satellite missions

TABLE 3. Relative biases (NME) caused by the use of different particle types in the triple-frequency estimates. For any given row, the

same particle type is used in the generation of the a priori information; for a given column, the same particle type is used in the generation

of the evaluation reflectivity.

Actual particle type

ScatDB PSU aggregates PSU graupel

Assumed particle type ScatDB 20.41% 212.47% 10.41%

PSU aggregates 21.85% 20.22% 33.81%

PSU graupel 27.10% 216.04% 20.48%

TABLE 4. Confusion table showing the percentual distribution of particle classification types as a function of their actual type. Similar to

Table 3, all of the particles in the same row have the same type, and columns indicate their estimated type.

Particle classification

ScatDB PSU aggregates PSU graupel

Actual particles ScatDB 39.55% 29.49% 30.95%

PSU aggregates 20.02% 70.19% 9.78%

PSU graupel 26.01% 15.62% 58.36%
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such the ACE mission (Starr et al. 2010), were the pri-

mary objectives of both of these field campaigns. The

focus in IPHEX was on warm-season orographic pre-

cipitation systems, whereas inOLYMPEX the focus was

on extratropical cyclones and their interaction with the

Olympic Mountains. The precipitation occurring in ex-

tratropical cyclones interacting with orography is the

consequence of complex microphysical and mesoscale

dynamic processes. Although these processes have been

systematically investigated for decades (e.g., Matejka

et al. 1980; Browning 2003), their quantification from

spaceborne radar observations is not trivial (Houze et al.

2017). The use of multiple-frequency radar and/or co-

incident radiometer observations is expected to facili-

tate the derivation ofmore accurate andmicrophysically

more insightful precipitation estimates than those typically

derived from single-frequency radar observations. How-

ever, only systematic analyses based on coordinated

ground and airborne observations such as those col-

lected during OLYMPEX can objectively reveal the

strengths and limitations of multiple-frequency space-

borne (or airborne) observations.

The triple-frequency (Ku, Ka, and W bands) radar

observations used to investigate the method described

in the previous section were collected by the NASA

High-Altitude Imaging Wind and Rain Airborne Pro-

filer (HIWRAP; Li et al. 2016) and the Cloud Radar

System (CRS; Li et al. 2004) on board the NASA

Earth Research-2 (ER-2; Navarro 2007) aircraft during

IPHEX andOLYMPEX. The technical specifications of

HIWRAP andCRS are given inHouze et al. (2017). The

radar observations are collocated, but not beammatched.

Given that they are two-dimensional (nadir only), we do

not convolve the W- and Ka-band observations to the

Ku-band radar resolution and treat differences due to

observation volume mismatches as random noise. The

range resolution of the three radars is the same (i.e.,

37.41m), but to speed up the processing without sacrificing

accuracy we sort the initial observations into 74.82-m-

resolution bins. The radars sensitivities are28dBZ for the

Ku and Ka bands and 215dBZ for W band at 10.0-km

range.We apply a threshold to the observations at25dBZ

for all radars and do not derive estimates unless all ob-

servations are above 25dBZ.

Houze et al. (2017) provide brief descriptions of the

synoptic context for all airborne radar measurements in

OLYMPEX. In this study, we exclusively consider cases

for which good coincident in situ microphysics obser-

vations exist. During both IPHEX and OLYMPEX, the

2D-S (Lawson et al. 2006) and HVPS-3 instruments

were mounted on the UND Cessna Citation airplane

(Heymsfield et al. 2018). These instruments collected

microphysical observations during flights coordinated

with those by the NASAER-2 aircraft. To identify radar

reflectivity observations coincident with microphysical

observations by instruments on board theUNDCitation

airplane, we loop through all the radar profiles and for

each profile determine the closest UND Citation location

within 6min of the profile observation. If the distance be-

tween the profile locationon the ground (definedby latitude

and longitude) and of the citation aircraft is less than 0.1km,

then the radar observations are considered coincident with

the in situ microphysics observations. Using this procedure,

we find two OLYMPEX cases and one IPHEX case that

are characterized by good coincidence between the radar

and in situ observations. The OLYMPEX cases are inves-

tigated first because they provide a larger dataset of co-

incident observations.

Shown in Fig. 8 are the collocated Ku-, Ka-, and

W-band reflectivity observations collected by HIWRAP/

CRS on 1 December 2015. Note that the observations in

FIG. 8. Triple-frequency reflectivity observations collected by

the HIWRAP/CRS during OLYMPEX on 1 Dec 2015. The blue

lines indicate the altitude of the Citation airplane. The bright band

apparent in the Ku- and Ka-band reflectivity observations suggests

a freezing-level height of approximately 2.0 km.
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Fig. 8 are not exclusively associated with frozen pre-

cipitation. Brightband-like structures are apparent in both

the Ku- and Ka-band observations. These structures are

used to identify the ice phase in a procedure similar to the

GPM single-frequency precipitation classification algo-

rithm (Awaka et al. 2016). Precipitation estimates are

limited to the ice phase. Over the period shown in Fig. 8,

ER-2maintained a straight-line coursemultiple times with

changes of directions intended to provide repeated ob-

servations over a broad stratiform region associated with a

weak frontal passage. TheUNDCitation carried out more

complexmaneuvers intended tomaximize the coincidence

with the ER-2 observations while flying at significantly

lower speeds. The reflectivity observations that could not

be collocated with in situ observations using the procedure

described above are not shown in Fig. 8. Consequently,

there are discontinuities in the time axis. The blue line in

the height–time reflectivity maps shows the altitude of the

Citation. The reflectivity structures at all frequencies are

indicative of stratiform precipitation. The attenuation due

to water vapor is quantified from 6-hourly analyses

provided by the Global Forecast System (GFS) model

(Kanamitsu et al. 1991). As previously mentioned, the at-

tenuation due to cloudwatermay be a significant source of

uncertainty. For the three cases investigated in this paper

we assume, as described in section 3, a 1.0-km-deep layer

of cloud water of magnitude 0.1gm23. The attenuation

due to ice particles is handled through a gate-by-gate

correction. The IWC and Dm estimated from the obser-

vations in Fig. 8 are shown in Fig. 9. As expected, the es-

timated IWC and Dm tend to be correlated with the

observed reflectivity and to increase with temperature.

However, some, most likely artifacts, are apparent in the

IWC at the top of the cloud. For example, IWC estimates

above 7.0km in the 23.29–23.31 time interval tend to be

larger than estimates for altitudes between 6.5 and 7.0km

for the same interval. This is most likely a consequence of

noise in the observed reflectivities and of the radar systems

not being beammatched. This makes the dual-wavelength

ratios (which are small at the top of the cloud) hard to

interpret unambiguously. Nevertheless, these artifacts are

minor, and direct comparisons with in situ observations

(see Fig. 10) show very good agreement.

Shown in Fig. 11 are the collocated Ku-, Ka-, and

W-band reflectivity observations collected by HIWRAP/

CRS on 3 December 2015. The reflectivity structures

shown in Fig. 11 are more complex than those shown in

Fig. 8. In particular, a band of enhanced reflectivity just

above 4.0km is apparent (most apparent in the W-band

observations) between 15.35 and 15.37. While the physical

processes responsible for the rapid vertical variations in the

reflectivity at W band may not be reliably diagnosed from

reflectivity-only observations, these variations may be the

result of size sorting (Kumjian and Ryzhkov 2012) and,

possibly, production of secondary ice particles (Field

et al. 2017). That is, secondary ice splinters may form as

FIG. 9. (top) IWC and (bottom)Dm above the bright band derived

from the triple-frequency radar observations shown in Fig. 8.

FIG. 10. (top) IWC derived from the triple-frequency radar ob-

servations and estimated from the 2D-S and HVPS instruments on

board the Citation airplane using the method of Heymsfield et al.

(2010) and (bottom) Dm from the radar observations and the Ci-

tation instruments.
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the result of water droplets shattering during freezing or

of the collisional fragmentation of dendritic crystals

(Bower et al. 1996; Field et al. 2017). The estimated ice

water content and associated mass mean diameter are

shown in Fig. 12. Consistent with the secondary-ice-

production hypothesis, the estimated mass mean diameter

shows strong vertical variations. Specifically, a region of

smaller Dm values (i.e., Dm ’ 0.6mm) associated with

enhanced ice water contents at and above 4.0km in the

time interval 15.35–15.37 is noticeable in Fig. 12. The es-

timated IWC and associated Dm coincident with in situ

observations are shown in Fig. 13. Although there is rea-

sonable agreement between the radar and the in situ IWC

estimates, there are also significant discrepancies. In par-

ticular, the radar IWC estimates in an interval straddling

15.64 are significantly smaller than the in situ estimates and

the radar mass mean diameter estimates exhibit less vari-

ability than the in situ estimates. It is worth mentioning

though that the in situ IWC and Dm estimates are not

uncertainty free. An optimistic estimate of uncertainties in

the in situ IWC estimates is 25% (Heymsfield et al. 2002).

At the same time, the radar and in situ estimates are not

perfectly coincident in time and space, and a time differ-

ence of a fewminutes could result in significant differences

between estimates.

An additional perspective on the performance of the

nonparameterized triple-frequency ice estimation method

can be derived through its application to radar obser-

vations collected during IPHEX. In situ microphysical

observations coincident with the radar observations

weremore difficult to collect, because the characteristics

of the precipitation systems in IPHEXwere significantly

different from those in OLYMPEX. Specifically, pre-

cipitation systems in IPHEX were locally more intense

and shorter lived than in OLYMPEX. They were not

characterized by large areas of stratiform precipitation

favorable for long coordinated ER-2 and Citation

flights. As a consequence, the subset of triple-frequency

radar observations for which coincident in situ obser-

vations exist is much smaller than that for OLYMPEX.

Shown in Fig. 14 are the triple-reflectivity observations

of a stratiform rain cell on 12 June 2014. As is apparent

from Fig. 14, the precipitation distribution above the

bright band does not extend vertically as much as it does

in the OLYMPEX cases. It also exhibits strong hori-

zontal variability over short distances (the distance as-

sociated with the time axis in Fig. 14 is about 20 km). The

radar IWC and Dm estimates and the associated in situ

FIG. 11.As in Fig. 8, but for the 3Dec 2015 case. The structures of

the Ku- and Ka-band reflectivity observations suggest a freezing

level of approximately 2.0 km (consistent with the GFS analysis

product).

FIG. 12. As in Fig. 9, but for the 3 Dec 2015 case.
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estimates are shown as a function of time in Fig. 15.

Similar to Figs. 10 and 13, the radar and in situ IWC

estimates appear to bemore strongly correlated than the

radar and in situ Dm estimates. The reason for this is

unclear, because the cross-validation analysis (e.g.,

Fig. 5) suggests that estimated IWC and Dm should ex-

hibit similar uncertainties. A plausible hypothesis is that

Dm has a more complex distribution (potentially bi-

modal) than does IWC, which makes the estimates more

sensitive to sampling errors in the a priori database.

5. Conclusions

In this study, a nonparameteric method (nPEnKS) to

estimate the ice water content and the associated mass

mean diameter from airborne triple-frequency ob-

servations (Ku, Ka, and W bands) is formulated and

investigated. The method relies on an efficient search

procedure that identifies records in a PSD reflectivity

database that are characterized by reflectivity triplets

within a small range from the actual observations.

These records are input to an EnKS procedure to

derive ice water content and mass mean diameter

estimates.

The estimation method is first investigated through a

cross-validation approach. In specific terms, the PSD

reflectivity database is randomly separated into two

disjoint subsets, and one subset is used to provide the in-

version information needed by the estimation method

while the other is used for validation. The cross-validation

approach reveals the benefits of triple-frequency

observations relative to dual- and single-frequency

observations. Uncertainties and systematic errors induced

by uncertainties in the a priori PSD distributions and the

type of ice particles are also investigated using the cross-

validation approach. In a similar way, results reveal the

benefits of triple-frequency observations even though the

type of ice particle does not appear to be reliably identi-

fiable, as suggested by previous investigations.

The application of nPEnKS to real observations col-

lected during the OLYMPEX and IPHEX field cam-

paigns and the comparison of the derived IWC and Dm

estimates with in situ estimates from cloud probes sug-

gest performance that is generally consistent with the

cross-validation analysis. To be specific, the correlations

between the radar and in situ IWC estimates appear to

be in the same range as those in the cross-validation

analysis (i.e., 0.7–0.8). However, the agreement between

radar and in situ estimates of Dm appears to be worse

(significantly worse in one case) than those in the cross-

validation analysis. This could be a consequence of the

FIG. 13. As in Fig. 10, but for the 3 Dec 2015 case.

FIG. 14. Dual-frequency reflectivity observations collected by

the HiWRAP/CRS during IPHEX on 12 Jun 2014. The blue lines

indicate the altitude of the Citation airplane.
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fact that there is a potential time difference between the

two types of estimates of up to 6min, and in an Eulerian

framework PSDs may change significantly in a 6-min

interval. At the same time, especially given complex

processes such as ice splintering and aggregation, it is

possible that the ice particles and the associated back-

scattering properties considered in this study do not

cover the entire spectrum encountered in nature, which

may occasionally result in significantly larger errors than

expected from the statistics of the cross-validation

studies.

The extension of nPEnKS to satellite applications

using a sequential-processing strategy is straightfor-

ward. That is, the method can be structured in two dis-

tinct steps. In the first step, nPEnKS can be applied, as is,

to derive ensembles of IWC and associated scattering

estimates at W band from downscaled Ku- and Ka-band

observations (Grecu et al. 2016). In the second, the en-

sembles of IWC and scattering properties can be used to

simulate W-band observations using a fast multiple-

scattering radar model (Hogan and Battaglia 2008) and

to derive final estimates using the ensemble Kalman

filter smoother.
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