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ABSTRACT

In this study a new radar rainfall estimation algorithm—rainfall estimation using simulated raindrop size

distributions (RESID)—was developed. This algorithm development was based upon the recent finding

that measured and simulated raindrop size distributions (DSDs) with matching triplets of dual-polarization

radar observables (i.e., horizontal reflectivity, differential reflectivity, and specific differential phase)

produce similar rain rates. The RESID algorithm utilizes a large database of simulated gamma DSDs,

theoretical rain rates calculated from the simulated DSDs, the corresponding dual-polarization radar

observables, and a set of cost functions. The cost functions were developed using both the measured and

simulated dual-polarization radar observables. For a given triplet of measured radar observables, RESID

chooses a suitable cost function from the set and then identifies nine of the simulated DSDs from the

database that minimize the value of the chosen cost function. The rain rate associated with the given radar

observable triplet is estimated by averaging the calculated theoretical rain rates for the identified simulated

DSDs. This algorithm is designed to reduce the effects of radar measurement noise on rain-rate retrievals

and is not subject to the regression uncertainty introduced in the conventional development of the rain-rate

estimators. The rainfall estimation capability of our new algorithm was demonstrated by comparing its

performance with two benchmark algorithms through the use of rain gauge measurements from the

Midlatitude Continental Convective Clouds Experiment (MC3E) and the Olympic Mountains Experiment

(OLYMPEx). This comparison showed favorable performance of the new algorithm for the rainfall events

observed during the field campaigns.

1. Introduction

The improvement of radar rainfall estimation has long

been an active topic, as radar measurements play an

important role in various applications related to mete-

orology, hydrology, and agriculture, among others (Sene

2009; Testik and Gebremichael 2010). Over the years a

large number of dual-polarization radar algorithms for

rain-rate estimations have been developed and tested

(e.g., Seliga and Bringi 1976; Bringi and Chandrasekar

2001). These algorithms can be classified into two cate-

gories: (i) algorithms that estimate rain rates using

functions (i.e., referred to as rain-rate estimators) that

depend on the dual-polarization radar observables

[i.e. horizontal reflectivity (Zh), differential reflectivity

(Zdr), and specific differential phase (Kdp)] (category I);

and (ii) algorithms that retrieve raindrop size distri-

butions (DSDs) and use the retrieved DSDs to esti-

mate rain rates via a rain-rate computation equation

(category II; see details below). Typical examples of cat-

egory I algorithms include Colorado State University–

Hydrometeor Identification Rainfall Optimization

(CSU-HIDRO) (Bringi and Chandrasekar 2001; Cifelli

et al. 2011), the Joint Polarization Experiment (JPOLE)

(Ryzhkov and Zrnić 1995, 1996; Ryzhkov et al. 2005a,b),

Weather Surveillance Radar-1988 Doppler quantitative

precipitation estimation (WSR-88D QPE) (Giangrande

and Ryzhkov 2008; Vasiloff 2012; Berkowitz et al.

2013), the standard Next Generation Weather Radar

(NEXRAD) (Fulton et al. 1998), and a number of others

(e.g., Sachidananda and Zrnić 1987; Chandrasekar et al.
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1993; Petersen et al. 1999; Cifelli et al. 2002; Bringi et al.

2009; Ryzhkov et al. 2014—based upon specific attenu-

ation). Typical examples of category II algorithms are

the algorithms developed by Zhang et al. (2001),

Gorgucci et al. (2001, 2002), Bringi et al. (2002), Brandes

et al. (2004a), Cao et al. (2010), Thurai et al. (2012), and

Adirosi et al. (2014). In this study liquid precipitation

(e.g., rain, drizzle) was our primary focus, and hence we

implemented a hydrometeor classification to filter out

other types of precipitation (see discussions in sections 2

and 3).

Although all of the algorithms mentioned above have

been proven to perform at certain conditions, they were

examined for errors introduced by parameterizations

that were used in developing the rain-rate estimators

and the DSD retrievals (e.g., Bringi and Chandrasekar

2001; Krajewski and Smith 2002; Thurai et al. 2012). In

the development of a typical category I algorithm, the

dual-polarization radar observables and the corre-

sponding theoretical rain rates are first calculated using

either the simulated or measuredDSDs. The calculation

of the dual-polarization radar observables relies on an

accurate description of the electromagnetic scattering

by particles. Computational techniques, such as the

T-matrix method (Mishchenko et al. 1996), the discrete

dipole approximation (Draine and Flatau 1994), and the

Rayleigh formulas (see, e.g., Ryzhkov et al. 2011), have

been widely used in determining the scattering ampli-

tudes. Once the scattering amplitudes of raindrops are

determined, the radar observables can be calculated.

These calculations are based upon the assumption that

raindrops follow a certain axis ratio–diameter relation-

ship (e.g., Beard and Chuang 1987; Bringi et al. 2003;

Beard et al. 2010). These calculations also incorporate

assumptions about raindrop oscillations (typically

implemented through canting angle distribution con-

siderations; e.g., Beard and Jameson 1983; Bringi and

Chandrasekar 2001) and temperature. Then, a large

number of simulated dual-polarization radar observables

and their theoretically calculated rain rates are utilized

to derive the rain-rate estimators through nonlinear

regression analyses (Bringi and Chandrasekar 2001;

Ryzhkov et al. 2005a). As pointed out by a number of

previous studies (e.g., Ciach et al. 2000; Krajewski and

Smith 2002), the regression coefficients are highly sensi-

tive to the ranges of the simulated radar observables, the

sample size for the regression, and the data quality

when measured DSDs are used. Moreover, for any

given group of radar observables (e.g., Zh and Zdr), the

derived rain-rate estimator can estimate the rain rate

only as the value on the regression curve or surface,

which would result in an uncertainty that is not typi-

cally accounted for.

Ideally, the aforementioned errors introduced by the

data regression could be corrected by the use of category

II algorithms with perfectly retrieved DSDs. This is

because, in any category II algorithm, the rain rate is

calculated using a theoretical equation that utilizes the

DSD retrieved from the measured triplet of radar ob-

servables (i.e., Zh, Zdr and Kdp) (Zhang et al. 2001;

Bringi et al. 2002). If the retrieval method for the DSD

were flawless, the theoretical rain-rate equation, which

is only a function of the DSD and raindrop fall velocity,

would be able to provide a relatively accurate rain rate

for a given triplet of radar observables. The rainfall es-

timation errors associated with the errors in raindrop fall

velocities were discussed in great detail in Pei et al.

(2014), but they are not a focus of this study. Never-

theless, the retrieval methods for DSDs have limitations

and these limitations constrain the accuracy of the

category II algorithms. Gorgucci et al. (2001, 2002)

developed a method, which was later improved by

Bringi et al. (2002), to retrieve gamma DSDs using the

measured triplets of radar observables. In this method

the normalized gamma DSD parameters (i.e., median

volume diameter D0, normalized intercept parameter

Nw, and shape parameter of a gamma distribution m)

were modeled as functions of radar observables. How-

ever, similar to the category I algorithms, these func-

tions were derived using nonlinear regressions between

simulated radar observables and the corresponding

DSD parameters. Moreover, this method was reported

to performwell only for radar observables within certain

ranges of values and has a precision that is limited by the

accuracy of the Kdp measurements (Brandes et al.

2004b). Note that measurement errors inKdp values may

reach up to 0.58km21 depending on the precipitation

type, the number of radar samples, and the averaging

range of the differential phase shift in Kdp calculations

(Aydin et al. 1995; Ryzhkov and Zrnić 1996; Brandes

et al. 2004b). Furthermore, Kdp measurements are not

reliable when there is nonuniform beamfilling caused

by a mixture of precipitation (WDTB 2011). To elimi-

nate the effects of Kdp measurement errors in DSD re-

trievals, Zhang et al. (2001) proposed a method that

uses a constrained gamma distribution to reduce the

number of parameters (from three to two) that are re-

quired to represent a given DSD. In Zhang et al. (2001),

the standard gamma DSD parameters (i.e., intercept

parameterN0, slope parameterL, and m) were retrieved

from only Zh and Zdr measurements without using Kdp

measurements. Although the effects of Kdp measure-

ment errors in DSD retrievals were eliminated, the

constrained gamma distribution in Zhang et al.’s algo-

rithm was also developed through a regression analysis

andmay be challenged by theDSDs that have significant
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concentration differences between larger and smaller

raindrops (Brandes et al. 2004a,b). For example, the

constrained gamma distribution may not be applied to

the DSDs with large populations of larger drops and

small populations of smaller drops, such as those that

may be observed in the leading edges of some convec-

tive storms (Brandes et al. 2004a).

In this study we developed a new algorithm that takes

advantage of the benefits of both category I and category

II algorithms to provide more accurate rainfall estimates.

Recently, Adirosi et al. (2014) introduced a method to

evaluate the accuracy of the gamma DSD assumption in

radar rainfall estimations. In their study the rain rates that

were estimated using the measured DSDs and the simu-

lated ones that follow gamma distributions were com-

pared. The simulated gamma DSD that corresponds to

the measured one was considered to be the simulated

DSD with the smallest cost function value. The cost

function was defined using the triplet of dual-polarization

radar observables. Adirosi et al. concluded that errors

associated with the gamma DSD assumption exist, but

they showed that these errors were reasonably small,

especially at the S band (see Fig. 4 of Adirosi et al. 2014),

which is the focus of this study. Similar to Adirosi et al.

(2014), cost functions have been utilized in other studies

for DSD retrievals and rain-rate estimations. In one such

study, Cao et al. (2010) performed dual-polarization ra-

dar rainfall estimation through the retrieval of DSDusing

the Bayesian approach. In their study rain rate was esti-

mated from a gamma DSD, which was constructed using

mean and standard deviations of the conditional distri-

butions of the DSD parameters retrieved through the

Bayesian approach. In another study, Posselt et al. (2015)

analyzed the information content of the selected dual-

polarization radar observables in the mixed- and ice-

phase regions of a convective storm. Both observational

andmodeling uncertainties of the radar observables were

quantified using the Bayesian approach similar to that

implemented in Cao et al. (2010). The likelihood equation,

whichmay be considered equivalent to a cost function, was

utilized in both studies. Here, we developed a new rain-

rate estimation algorithm by using a large database of

simulated gamma DSDs and a series of selected cost

functions without a regression analysis. We concluded that

for any given triplet of measured dual-polarization radar

observables, simulated DSDs with similar rain rates as

the ‘‘real’’ DSD can be identified using an appropriate

cost function. Therefore, these simulated DSDs can be

used to estimate the rain rate. To demonstrate the im-

proved accuracy of rain-rate retrievals using this proposed

algorithm, a comparative analysis was conducted using

rain gauge measurements and two benchmark radar rain-

fall estimation algorithms.

This paper is organized as follows: the proposed al-

gorithm along with the two benchmark algorithms are

introduced in section 2, the radar and rain gauge mea-

surement data utilized in this study are discussed in

section 3, the results and discussions are presented in

section 4, and the summary and conclusions are pro-

vided in section 5.

2. Methodology

A new radar rainfall estimation algorithm—rainfall

estimation using simulated DSDs (RESID)—was de-

veloped and compared with two benchmark algorithms:

CSU-HIDRO (Bringi and Chandrasekar 2001; Cifelli

et al. 2011) and WSR-88D QPE (Giangrande and

Ryzhkov 2008; Vasiloff 2012; Berkowitz et al. 2013).

Details of these three algorithms are discussed in this

section.Without further notice, all formulations given in

this article are for the S-band radar with 10-cm wave-

length. Note that, other than S-band radar, conventional

scanning weather radars with different wavelengths

(e.g., C and X bands) are also used in rainfall estima-

tions. The weather radars that operate on a shorter

wavelength (e.g., X band) than the S-band radars are

more sensitive to the surroundings and attenuation in

shorter distances. Moreover, for such radars, increased

sensitivity to the differential phase shift has more pro-

nounced effects on measurements during rainfall events

that are composed of small spherical raindrops (e.g., low

rain-rate events). Therefore, although such radars can

detect smaller particles (e.g., cloud drops), they are

suitable for observations within a shorter range and for

certain environmental conditions.

a. CSU-HIDRO

TheCSU-HIDROrainfall retrieval algorithmutilizes a

combination of four rain-rate estimators as presented in

Fig. 1 (reproduced from Cifelli et al. 2011). These esti-

mators are R(Zh), R(Kdp), R(Zh, Zdr), and R(Kdp, Zdr).

The empirical formulations for these estimators are given

as follows (Bringi and Chandrasekar 2001):

R(Z
h
)5 0:017(Z

h
)0:7143, (1)

R(K
dp
)5 50:7(K

dp
)0:85, (2)

R(Z
h
,Z

dr
)5 6:73 1023 (Z

h
)0:927 10(20:343Zdr), (3)

R(K
dp
,Z

dr
)5 90:8(K

dp
)0:93 10(20:169Zdr). (4)

Here, R is the rain rate (mmh21), which is modeled as

functions of the abovementioned dual-polarization radar

observables Zh (mm6m23), Zdr (dB) and Kdp (8km21).

These empirical formulations were derived through
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nonlinear regressions as described in the previous section.

Details of the derivation procedure can be found inBringi

and Chandrasekar (2001) and Pei et al. (2014). Using the

CSU-HIDRO algorithm, the rain rate can be estimated

for any given triplet of radar observables (see Fig. 1).

Since the focus of this study was liquid rainfall, a hydro-

meteor identification (HID) algorithmwas required to be

able to filter out solid precipitation that may occur during

severe convective storms and cold-season precipitation

events. We used the WSR-88D hydrometeor classifica-

tion algorithm (HCA; see the discussion in the next

subsection) to identify different precipitation types for

the CSU-HIDRO, the WSR-88D QPE, and the RESID

algorithms. It should be noted that CSU-HIDRO has its

own HID algorithm (see Fig. 1) that utilizes a fuzzy logic

technique to classify precipitation types (Lim et al. 2005;

Cifelli et al. 2011; Dolan et al. 2013). However, for a fair

comparison, the HCA was implemented consistently

among all of the rain-rate estimation algorithms.

b. WSR-88D QPE

The WSR-88D QPE algorithm uses only one rain-rate

estimator for liquid rainfall estimations. This estimator

is R(Zh, Zdr) [Eq. (3)], which was adopted from the

CSU-HIDRO rainfall retrieval algorithm (Vasiloff 2012;

Berkowitz et al. 2013). This estimator [Eq. (3)] replaced

the initial estimator that was developed as part of JPOLE

(Giangrande and Ryzhkov 2008) because it produces

rainfall estimates that are more accurate for Southeast

storms than the initial estimator (Vasiloff 2012). Along

with theHCA, theWSR-88DQPEalgorithmusesEq. (1)

and the following estimator given in Eq. (5) to estimate

the mixed and cold-season precipitation (e.g., hail, snow,

graupel):

R(K
dp
)5 44jK

dp
j0:822 sign(K

dp
) , (5)

where sign(Kdp) is the signum function that indicates the

sign (positive or negative) of the Kdp value. The details

of the WSR-88D QPE algorithm can be found in

Giangrande and Ryzhkov (2008) and Berkowitz et al.

(2013). In these publications the HCA was reported

to be capable of identifying 10 different types of

meteorological and nonmeteorological classifications,

including light and moderate rain, a mixture of rain and

hail, wet snow, graupel, ice crystal, and ground clutter.

In this study we did not conduct the calculations [i.e.

using the equations; e.g., Eq. (3), and the HCA] to es-

timate the rain rates for the WSR-88D QPE algorithm.

Instead, we used the precipitation products available

from the National Climatic Data Center (NCDC; see

section 3 for details). These products were produced

using the HCA and the abovementioned equations, and

were widely utilized by the weather and radar commu-

nities. It should be noted that these products using the

WSR-88D QPE algorithm consider radar observables

measured at different elevation angles to optimize the

rainfall estimations for different clutter, exclusion zone,

and beam blockage conditions (WDTB 2011). However,

optimization of the rainfall estimations at different ele-

vation angles is beyond the scope of this study and was

not implemented here for theCSU-HIDROandRESID

estimations. Therefore, for CSU-HIDRO and RESID,

we used the radar observables measured at the lowest

elevation angle (0.58) to estimate the radar rainfall.

c. RESID

The RESID algorithm was developed to improve the

rain-rate estimations using the current dual-polarization

FIG. 1. CSU-HIDRO rainfall retrieval algorithm, with radar observables Zh (dBZ), Zdr (dB),

and Kdp (8 km21).
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weather radars. The fundamental basis of this algorithm is

that, for any given measured triplet of dual-polarization

radar observables, a simulated DSD (with a calculated

triplet of radar observables that is similar to themeasured

one) can be utilized to estimate the rain rate. The rain-

rate estimation error using this approach has been shown

to be fairly small if the triplet calculated from the simu-

lated DSD is sufficiently close to the measured one

(Adirosi et al. 2014). We implemented the following

three-step approach to develop the RESID algorithm for

improved radar rain-rate estimations. It should be noted

that, because of the radar observational uncertainties

(e.g., measurement error in Kdp), the actual observed

DSD and the simulated DSD with the matching triplets

may differ (see Adirosi et al. 2014 and McFarquhar et al.

2015). Our study (and the RESID) did not address these

radar observational uncertainties explicitly; however, we

expect that their impacts on rain-rate estimates are re-

duced, as the RESID utilizes an optimization scheme in

cost function selection. Moreover, the RESID addressed

the uncertainties from the parameterization/regression

analyses in developing the category I and II algorithms.

1) STEP 1: DSD SIMULATIONS

A large number of simulated DSDs, their calculated

triplets of radar observables, and the corresponding

theoretical rain rates are required for the implementa-

tion of the RESID algorithm. The purpose of the DSD

simulations is not to develop a database of realistic

DSDs but to cover a wide range of DSD possibilities

(Adirosi et al. 2014). In radar rainfall estimations, DSDs

are typically modeled as gamma distributions (Ulbrich

1983). In this study the gamma distribution assumption

was adopted and the normalized gamma DSDs were

utilized. Proposed by Willis (1984), the normalized

gamma DSD can be expressed as follows:

N(D)5N
w

6

3:674
(3:671m)m14

G(m1 4)

�
D

D
0

�m

3 exp

�
2(3:671m)

D

D
0

�
, (6)

whereN(D) is the DSD, which represents the number of

drops in a unit volume (m3) and a unit interval of the

equivalent-volume drop diameter D (mm); G( ) is the

complete gamma function; and Nw (mm21m23), D0

(mm), and m (unitless) are the aforementioned normal-

ized gamma DSD parameters. Using Eq. (6), a database

of simulated gamma DSDs can be formed by varying the

values of the normalized gamma DSD parameters (i.e.,

Nw, D0, and m). In this study log10(Nw), D0, and m were

uniformly varied with a 0.03 increment over the ranges

from 1 to 7 (for Nw; mm21m23), from 0.5 to 3.5mm, and

from 23.4 to 20, respectively (e.g., D0 values were varied

as 0.5, 0.53, 0.56, . . . , 3.5mm). Note that these proposed

ranges were mostly adopted from Adirosi et al. (2014),

who performed a relevant sensitivity analysis. However,

we set the lower bound ofm as23.4 instead of24, because

when the m value is between 23.67 and 24, Eq. (6) gen-

erates complex numbers. Moreover, unlike Adirosi et al.

(2014), a fixed increment, rather than random sampling,

was used to guarantee the entire DSD simulation domain

was densely covered. By doing so, more than 10 million

DSDs were simulated as opposed to Adirosi et al. (2014),

who used over 80000 DSDs.

Once the database of simulatedDSDswas constructed,

the corresponding dual-polarization radar observables

and theoretical rain rates were calculated. The dual-

polarization radar observables were computed using the

T-matrix method (Leinonen 2014). In our computations,

the minimum and maximum drop diameters were set as

0 and 8mm, respectively. The dielectric constant of

water was taken at 208C fromRay (1972) as suggested by

Bringi and Chandrasekar (2001). Temperature variation

was not considered in the calculations. It was assumed

that raindrops follow the equilibrium shape proposed by

Beard and Chuang (1987) and that the raindrop canting

angles follow a normal distribution with a 08mean and a

78 standard deviation (Bringi and Chandrasekar 2001).

The equilibrium shape model by Beard and Chuang

(1987) was described using the following polynomial fit:

a5
b

a
5 1:00481 5:73 1024D2 2:6283 1022D2

1 3:6823 1023D3 2 1:6773 1024D4 , (7)

where a is the axis ratio, defined as the ratio of the semi-

minor (b) to the semimajor (a) axis lengths of the equi-

librium raindrop shape; and D is in millimeters. It should

be noted that raindrops observed in both artificial and

natural rainfall experiments indicated that raindrop axis

ratios may deviate from the equilibrium predictions by

Beard and Chuang (e.g., Gorgucci et al. 2000; Thurai et al.

2007). Equation (7) was still used, however, because it is a

widely accepted formulation in the radar community. In

our calculations the theoretical rain rates that correspond

to the simulated DSDs were determined using

R5 0:6p3 1023

ð‘
0

yD3N(D) dD , (8)

where y is the raindrop fall velocity (m s21). A com-

monly used approach is to assume that raindrops fall

at terminal velocity yt. Here, we represented rain-

drop fall velocities using the following terminal
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velocity parameterization (m s21) proposed by Atlas

and Ulbrich (1977):

y
t
5 3:78D0:67, (9)

where D is in millimeters. Note that this power-law

equation [Eq. (9)] was utilized mainly because of its sim-

plicity. A more complex terminal velocity parameteriza-

tion, such as the exponential relation developed by Atlas

et al. (1973), may be preferred for potential accuracy im-

provements. It can be considered that the use of this

simpler and potentially less accurate power-law equation

in RESID estimations in this study resulted in a poten-

tially more conservative comparison of the RESID’s ca-

pabilities with those of the two benchmark algorithms.

Substituting Eqs. (6) and (9) into Eq. (8) yields

R5 (0:6p3 1023)(3:78)N
w
f (m)G(4:671m)

3
D4:67

0

(3:671m)4:671m
, (10)

where

f (m)5
6

3:674
(3:671m)m14

G(m1 4)
. (11)

To eliminate the simulations with unrealistically large

rain rates, DSDs that result in theoretical rain rates

larger than 300mmh21 were removed from the database

(Bringi and Chandrasekar 2001; Gorgucci et al. 2008).

2) STEP 2: COST FUNCTION SELECTION

The cost functions are a critical component of the

RESID algorithm. For a given measured triplet of radar

observables, the representative DSDs can be identified

from the database developed in step 1 by minimizing the

selected cost function value. The cost functions are

modeled using the measured and simulated radar ob-

servables. Adirosi et al. (2014) utilized a single cost

function for their application as defined below:

CF5
(Z

h,m
2Z

h,s
)2

Z
h,s

1
(Z

dr,m
2Z

dr,s
)2

Z
dr,s

1
(K

dp,m
2K

dp,s
)2

K
dp,s

,

(12)

where CF is the cost function; subscripts m and s stand

for the measured and simulated radar observables, re-

spectively; and Zh,s, Zdr,s, and Kdp,s are the mean values

of the simulated radar observables. In radar measure-

ments, however, when theZh value is small (e.g.,,38dBZ),

Zdr andKdp are generally noisy. The measurement noise

also becomes an issue when the Kdp value is small

(e.g., ,0.38km21) or when its standard deviation falls

between 0.38 and 0.48km21 given how Kdp is derived

(Bringi and Chandrasekar 2001). Therefore, using the

single cost function provided in Eq. (12) alone may lead

to inaccurate rainfall estimates. Adirosi et al. (2014)

addressed this issue by utilizing an interpolation func-

tion along with Eq. (12) in order to reduce the DSD

selection error near the edges of the simulation domain

where the simulated triplets are thinly dispersed. In this

study we proposed a solution by incorporating a group

of modified cost functions that use a varying number

(i.e., 1, 2, or 3) of the radar observables (i.e.,Zh,Zdr, and

Kdp). The purpose was to reduce the effect of the radar

measurement noise by selecting a suitable cost function

for the given values of the measured radar observables.

The general form of the RESID cost functions is given

below:

CF(X
1
,X

2
, . . . ,X

n
)5 �

n

i51

(X
i,m

2X
i,s
)2

X
i,s

, (13)

where X1, X2, . . . , Xn are the dual-polarization radar ob-

servables (i.e., Zh, Zdr, and Kdp) with the n value varying

from 1 to 3;Xi,m is the measured radar observable; andXi,s

is the mean value of the simulated radar observable Xi,s.

The cost functions are named as single-, double-, and triple-

measurement cost functions as determined by the value of

n. For example, the cost function CF(Zh, Zdr), which is

expressed as [(Zh,m 2Zh,s)
2/Zh,s]1 [(Zdr,m 2Zdr,s)

2/Zdr,s],

is a double-measurement cost function. It should be noted

that these new cost functions do not address the radar

observational uncertainty as discussed earlier, which may

also result from radar calibration errors, etc.

3) STEP 3: ALGORITHM IMPLEMENTATION

We adopted the radar observable thresholds (see

Fig. 1) utilized in the CSU-HIDRO rainfall retrieval

algorithm to implement the RESID cost functions.

These thresholds were derived to differentiate radar

signals from noise and to maximize the performance of

the rain-rate estimators (Bringi et al. 1996; Petersen

et al. 1999; Cifelli et al. 2011). The complete RESID

algorithm is illustrated in Fig. 2. As can be seen in this

figure, for any given triplet of measured radar observ-

ables (i.e., Zh,m, Zdr,m and Kdp,m), a cost function is first

selected. This cost function is then used along with the

simulated radar observables (i.e.,Zh,s,Zdr,s, andKdp,s) to

locate the simulated DSDs that have the smallest cost

function values. During the development of the RESID

using a sample dataset, we found out that when the

minimum value of the triple-measurement cost function

[i.e. CF(Zh, Zdr, Kdp)] was larger than 0.1 (;1% of the

sample dataset), the double-measurement cost function

[i.e. CF(Zdr, Kdp)] provided more accurate results.
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Therefore, in the implementation of the algorithm,

when theminimum value of the triple-measurement cost

function is larger than 0.1, the double-measurement cost

function is utilized (see Fig. 2). Once the cost function

value is computed for each of the simulated DSDs, nine

of them that have the smallest cost function values are

selected. Then, the homogeneity around these DSDs is

checked. Adirosi et al. (2014) suggested that the DSDs

are not homogeneous when the difference between their

maximum and minimum theoretically calculated rain

rates (Rs) is larger than 15mmh21. In this study we did

not adopt their homogeneity criterion because a fixed

spread value of the calculated rain rate may not be

suitable for rainfall events with different intensities. We

observed that, in most inhomogeneous cases, the se-

lected DSDs have both positive and negative gamma

shape parameters (m). This is because the DSD with

either a positive or a negative m value can have similar

calculated radar observable triplets. However, the rain

rate associated with the DSD that has a negative m value

is usually much higher than the DSD that has a positive

m value. Therefore, in the implementation of the RESID

algorithm, to confine homogeneity among the selected

DSDs, the DSDs with a smaller count of the shape pa-

rameters that have the same sign (i.e., either positive or

negative) are discarded. For example, out of the nine

selected simulated DSDs with the smallest cost function

values, if three of them have negative m values, these

three DSDs are discarded and the remaining six DSDs

with positive m values are kept. This criterion resulted in

less than 1% of the selected DSDs not being homoge-

neous in our analysis. Such a homogeneity confinement

criterion ensured more accurate estimations of the rain

rates for the cases with selected DSDs that correspond

to significantly different rain rates. Finally, the rain rate

for the measured triplet of radar observables is esti-

mated by taking the average of the calculated rain rates

from the remaining selected DSDs. Note that there is a

set methodology in implementing the RESID algorithm

as described in this section. In the implementation of this

methodology for the datasets considered in this study

(sections 3 and 4), this methodology was not altered by

the ground truth (i.e., rain gauge measurement) or other

such parameters that would favor a biasing effect on the

results.

3. Data description

To evaluate the performance of the RESID, the CSU-

HIDRO, and the WSR-88D QPE algorithms, large

datasets from two major field campaigns were utilized.

The first dataset includes the dual-polarizationWSR-88D

observations from the Vance Air Force Base, Oklahoma

(KVNX), and the rain gauge measurements during the

Midlatitude Continental Convective Clouds Experiment

(MC3E) (Jensen et al. 2016). The second dataset includes

the radar measurements from the dual-polarization

WSR-88D at Langley Hill, Washington (KLGX), and

the rain gauge observations during the Olympic Moun-

tains Experiment (OLYMPEx) (Houze et al. 2017). The

FIG. 2. Flowchart of RESID rain-rate estimation algorithm, with radar observablesZh (dBZ),

Zdr (dB), and Kdp (8 km21).

AUGUST 2018 PE I AND TE ST IK 1707

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/35/8/1701/3414451/jtech-d-17-0201_1.pdf by guest on 24 June 2020



two field campaigns were selected to consider different

meteorological conditions in our comparative study.Mostly

convective and orographic precipitation was observed

during MC3E and OLYMPEx, respectively. Tropical pre-

cipitation was not part of these field campaigns. The rain

gauges deployed in these field campaigns were model

370/380 gauges manufactured by Met One Instruments,

Inc. (Global Hydrology Resource Center 2017). The ac-

curacy of this rain gauge model is 60.5% at 0.5 in.h21

(12.7mmh21) rainfall and61% at 1.0–3.0 in. h21 (25.4–

76.2mmh21) rainfall (Met One Instruments Inc. 2017).

The MC3E was held in central Oklahoma between

April and June 2011. It was a joint campaign between

the National Aeronautics and Space Administra-

tion (NASA) and the Department of Energy Atmo-

spheric Radiation Measurement Climate Research

Facility. It was partly to serve NASA’s Ground

Validation program for the Global Precipitation

Measurement (GPM) mission. Instruments deployed in

MC3E included aircraft- and ground-based instruments

that aimed at providing a comprehensive visualization

of the three-dimensional meteorological environment

(Jensen et al. 2016). Our analyses utilized the data from

the KVNXWSR-88D (S-band radar with a frequency of

;3GHz) and the 16 rain gauge pairs. The locations of

these instruments are shown in Fig. 3a. The distances

from the radar to the rain gauge pairs were from 53 to

65 km. The radar data were obtained from NCDC. We

used the quality-controlled level-III products, which

included Zh, Zdr, Kdp, the correlation coefficient (rHV),

the hydrometeor classification (HC), and the digital

precipitation rate (DPR). These products were available

as digital images. A special decoder was used to convert

them into a commonly used scientific data format. Ex-

cept for the DPR, all other products were measured at

0.58 elevation angle. The rHV is the correlation co-

efficient between the radar’s horizontal and vertical

polarizations, and it was utilized to distinguish non-

meteorological echoes. The HCs were used to identify

different particle types. The rainfall accumulations cal-

culated using the DPRs (based upon the WSR-88D

QPE algorithm) were utilized for comparisons with the

rainfall accumulations that were estimated using other

algorithms (i.e., CSU-HIDRO and RESID). In this

study all of the radar measurements in any range bin

with a rHV value less than 0.85 (i.e., nonmeteorological

echo) were discarded (Ryzhkov et al. 2005a). The radar

measurements classified as any particle type other than

precipitation (e.g., ground clutter, biological scatterers)

were not considered either. During MC3E, rainfall ac-

cumulations were measured using 32 rain gauges that

were paired at 16 locations to reduce measurement ar-

tifacts (see Fig. 3a). The quality-controlled rainfall

amount data from the 16 rain gauge pairs was averaged

for each pair at 1-min intervals and summed up to form

hourly accumulations that were used in the subsequent

analyses. For the time periods when there was only one

rain gauge measurement available, no averaging was

performed; andwhen both rain gaugemeasurements were

missing, the corresponding radar observations were not

considered. The rain gauge data in MC3E were mainly

from five days of measurements, namely, 24, 25, and

27 April, and 11 and 20 May 2011 (UTC). Note that an

intense convective event that occurred in the latemorning

of 20May (see Petersen and Jensen 2012) was excluded in

our analysis because of inadequate radar observations.

This event was associated with high rainfall intensities

with rapidly changing rain rates between sequential

radar scans. For this event a comparison between the

FIG. 3. Locations of (a) KVNX radar and 16 rain gauge pairs in

MC3E and (b) KLGX radar and 8 rain gauge pairs in OLYMPEx

(background images from Google Map).
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rain gauge–measured (Ag) and the radar-estimated (Ar)

hourly rainfall accumulations is presented in Fig. 4. As can

be seen in Fig. 4, the rainfall estimation errors for this

specific rainfall event are significant regardless of the

algorithm.

The second dataset utilized in this study was from

the KLGX radar (S-band radar with a frequency of

;3GHz) and the rain gauge pairs deployed in the

OLYMPEx field campaign. OLYMPEx was held on

the Olympic Peninsula of Washington State between

November 2015 and February 2016, and it is one of the

latest field campaigns led by NASA for the GPM

Ground Validation program. This field campaign fo-

cused on rainfall enhancement through orographic lift-

ing and assessment of precipitation measurements from

the GPM satellite (Houze et al. 2017). Radar rainfall

estimations may be influenced by the beam blockage

caused by orography. Each WSR-88D uses a local ter-

rain file and a hybrid scan technique (Berkowitz et al.

2013) to determine the percentage of beam blockage

(WDTB 2011). While an optimization scheme is im-

plemented in WSR-88D QPE to reduce the influence of

beam blockage, such a scheme is not implemented in

RESID and CSU-HIDRO (see the discussion in section

2). Therefore, screening for radar beam blockage was

essential in the evaluation of the algorithms. For the

screening we used the beam blockage map provided by

Mass (2011). The rain gauges in OLYMPEx with more

than 50% beam blockage at 0.58 elevation angle were

not considered in our analyses. The beam blockage

percentage value of 50% is the threshold value used by

the WSR-88D QPE algorithm to optimize the liquid

rainfall estimation (WDTB 2011). Removing rain gauges

at locations with beam blockage percentages that are

larger than 50% ensured that, consistent with the esti-

mations by the other two algorithms, the WSR-88D

QPE estimations used data from the 0.58 elevation an-

gle. This screening process resulted in 16 rain gauges

paired at eight locations for the subsequent analyses.

The locations of the KLGX radar and the eight rain

gauge pairs are shown in Fig. 3b. The distances from

the KLGX radar to the rain gauge pairs were between

17 and 58km. The KLGX radar data utilized in this

studywere similar to theKVNX radar data used, and the

same methods were employed to distinguish non-

meteorological echoes and to remove nonprecipitation

measurements as discussed above. Similarly, the same

data analysis methodology was implemented on the rain

gauge measurements to assemble the hourly rainfall

accumulations. Five days of moderate rainfall events

[i.e., 13 and 17 November, and 8 December 2015; and 21

and 28 January 2016 (UTC)] with the highest daily rain

totals during OLYMPEx were selected for our com-

parative analyses, detailed in the next section. The daily

rain totals were calculated as the summation of the

daily rainfall accumulations for the abovementioned

eight rain gauge pairs.

4. Results and discussion

The hourly rainfall accumulations estimated using the

RESID, the CSU-HIDRO, and the WSR-88D QPE al-

gorithms were compared with the rain gauge measure-

ments at 16 locations in MC3E and 8 locations in

OLYMPEx. To smooth the radar measurements at every

rain gauge location, rain rates from 10 radar gates that

were closest to the rain gauge were first estimated. These

radar gates were at two adjacent azimuth angles around

the given rain gauge (i.e., five radar gates closest to the

rain gauge for each of the azimuth angle). For the WSR-

88D QPE estimations, these rain rates were obtained

from the WSR-88D level-III precipitation products as

discussed in section 3. For the RESID and the CSU-

HIDRO estimations, the rain rates were estimated using

the methodology described in section 2 for the dual-

polarization radar observables measured at the 0.58 ele-
vation angle. Note that the radar measurements that

correspond to any precipitation type other than liquid

precipitation (e.g., mixed precipitation) were removed

from the analyses. Only 0.3% and 1.5% of the radar scans

that detected precipitation for MC3E and OLYMPEx,

respectively, were identified as mixed or cold-season

FIG. 4. Comparison between Ag and Ar for the convective rainfall

event of 20 May 2011. Symbols in this figure represent 1-h rainfall

accumulation values from different rain gauges (total of 16 rain gauges

inMC3E) and the corresponding radar retrievals using RESID, CSU-

HIDRO, and WSR-88D QPE algorithms (see the legend).
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precipitation. Then, the mean value of the estimated rain

rates from the five closest radar gates at two adjacent

azimuth angles (10 gates in total) was computed, and

this mean value was treated as the rain rate for that

particular rain gauge location. By doing this, the rain

rates were averaged roughly over an area of 1 km 3 18
(Ryzhkov et al. 2005a). To estimate the rain rates in

between the two subsequent radar observations, linear

interpolation was performed. In the case of no missing

radar scans, the time interval between two subsequent

scans varies with the severity of the event. For clear-air,

snow, and light stratiform events, the interval is usually

10min. For severe convective events, the interval can

reduce to as low as 4.5min (NWS 2017a). If there is a

missing scan, linear interpolation between the two

subsequent radar scans was still performed to estimate

the rain rates. These rain rates were then used to cal-

culate the rainfall accumulations corresponding to the

hourly rain gauge measurements.

The performance of the three algorithms in radar

rainfall estimation was examined by comparing the

radar-estimated rainfall accumulations with the rain

gauge measurements and these comparisons were quan-

tified statistically. The statistical quantities that were

utilized in this study included the normalized bias (NB),

the normalized standard error (NSE), and the Pearson

correlation coefficient (CORR). The respective mathe-

matical formulations are given below:

NB5
A

r
2A

g

A
g

3 100%, (14)

NSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A

r
2A

g
)2

q
A

g

3 100%, (15)

CORR5
cov(A

r
,A

g
)

s
Ar
s
Ag

, (16)

whereAr andAg are the radar-estimated and the gauge-

measured hourly rainfall accumulations, respectively;

Ar and Ag are the mean values of Ar and Ag, respec-

tively; (Ar 2Ag)
2 is the averaged square error betweenAr

and Ag; cov(Ar, Ag) is the covariance between Ar and

Ag; and sAr
and sAg

are the standard deviations of Ar

and Ag, respectively.

The results of our comparisons at three sample loca-

tions each for MC3E and OLYMPEx are presented in

Figs. 5 and 6, respectively. The three locations used in

these figures were purposefully selected far away from

each other (see Fig. 3). The statistics for rainfall accu-

mulations at all locations of MC3E and OLYMPEx are

provided in Tables 1 and 2, respectively. The statistics

from gauge 9 in MC3E were not included in the calcu-

lations of the mean statistics because of inadequate data

samples (see Table 1). As can be clearly seen from

Figs. 5 and 6 as well as from Tables 1 and 2, the RESID

algorithm outperforms the CSU-HIDRO and theWSR-

88D QPE algorithms in terms of estimating the hourly

rainfall accumulations. Detailed findings are summa-

rized below.

1) As presented in Fig. 5, the rainfall estimation re-

sults obtained by using RESID agree well with the

rain gauge measurements; however, CSU-HIDRO

and WSR-88D QPE tend to overestimate the

rainfall accumulations. Moreover, RESID esti-

mates the rainfall accumulations with a smaller

scatter (random error) than those that were esti-

mated using CSU-HIDRO andWSR-88DQPE. As

given in Table 1 for MC3E, both the NB and NSE

values for RESID estimations are significantly

lower than the NB and the NSE values for CSU-

HIDRO and WSR-88D QPE estimations. For

example, the rainfall accumulations estimated using

RESID have a mean NB value of 22.5%, whereas

the mean NB values for CSU-HIDRO and WSR-

88D QPE are 34.4% and 25.8%, respectively.

Nevertheless, all three algorithms performed well

in terms of their CORR values. Almost all CORR

values (see Tables 1 and 2) are larger than 0.8, which

indicates a strong positive correlation between the

estimated and the measured rainfall accumulations.

Although rain gauges were relatively closer to each

other in MC3E as compared to the ones in OLYM-

PEx (see Fig. 3), noticeable changes of rainfall sta-

tistics are observed across rain gauge sites (see

Table 1). This may be explained by the variation of

DSDs reported within the footprint of the dual-

polarization weather radar (see Tokay et al. 2017).

Among all of the rain gauges considered in MC3E,

gauge 10 has the highest NB and NSE values for all

of the algorithms. A single event that occurred in the

latemorning of 24April 2011 (UTC) is considered to

be the reason for this observation. Some of the radar

measurements were missing and the rain rate

changed rapidly during the event. Since the number

of the remaining available radar scans was limited,

the time history of such rapid changing rain rate (and

hence, rainfall accumulations) could not be recon-

structed accurately through linear interpolations of

the radar estimations. To demonstrate the impacts of

the differences in event characteristics on the per-

formance of the algorithms, Table 3 was created.

Similar statistical information as in Table 1 is pro-

vided for the five days of events at all 16 rain gauge

1710 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 35

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/35/8/1701/3414451/jtech-d-17-0201_1.pdf by guest on 24 June 2020



FIG. 5. Comparisons between Ag and Ar using RESID, CSU-HIDRO, and WSR-88D QPE algorithms at three

sample locations in MC3E [(a),(b) for rain gauge pair 3; (c),(d) for rain gauge pair 11; (e),(f) for rain gauge pair 16].

Summarized statistics are given in Table 1.
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locations of MC3E. The event characteristics shown

inTable 3 were adopted from Jensen et al. (2016). As

can be seen in this table, the statistics change signif-

icantly across the days of events. RESID, and the two

benchmark algorithms, performed better in terms of

NSE values in both convective and stratiform events

than the events with weak rainfall that occurred on

24 April. This behavior may be due to the presence

FIG. 6. As in Fig. 5, but for locations in OLYMPEx [(a),(b) for rain gauge pair 2; (c),(d) for rain gauge pair 4;

(e),(f) for rain gauge pair 6]. Summarized statistics are given in Table 2.
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of a large number of small drops in weak rainfall

events. Similar behavior was observed inOLYMPEx

and is discussed next in this section. Note that this

observation may also explain the large NSE values

(e.g., .50%) for RESID estimations at a few other

locations given in Table 1.

2) For OLYMPEx (see Table 2), although the RESID

algorithm outperforms the CSU-HIDRO and the

WSR-88D QPE algorithms in all cases, its perfor-

mance is not as high as that for MC3E (presented in

Table 1). These conclusions are evident by compar-

ing the statistical results in Tables 1 and 2 as well as

the visual representations in Figs. 5 and 6. Figure 7

presents the RESID statistics for the two field cam-

paigns as a function of rain gauge distance to the

radar and beam height above ground. This figure

provides a means to compare the performance of

RESID in two different field campaigns by taking

into account the sources of discrepancies (i.e., rain

gauge distance to the radar and beam height above

ground). Each data point shown in Fig. 7 represents

an individual rain gauge. The beam height above

TABLE 1. Statistics between rain gauge–measured and radar-estimated rainfall accumulations in MC3E using RESID, CSU-HIDRO, and

WSR-88D QPE algorithms.

Gauges/

statistics

NB (%) NSE (%) CORR

Nb Lr
c Hb

dRESID

CSU-

HIDRO

WSR-

88D QPE RESID

CSU-

HIDRO

WSR-

88D QPE RESID

CSU-

HIDRO WSR-88DQPE

1 1.4 40.0 18.6 35.3 83.6 66.1 0.95 0.93 0.85 36 60 848

2 23.7 34.8 32.5 41.1 82.3 77.4 0.93 0.92 0.92 34 57 789

3 21.6 39.0 6.4 27.5 77.2 46.2 0.97 0.96 0.92 36 57 796

4 25.4 32.9 5.7 31.5 71.8 54.3 0.95 0.94 0.87 31 60 845

5 22.0 40.1 12.0 37.5 60.8 47.9 0.94 0.94 0.90 19 56 766

6 24.7 41.1 9.8 29.1 74.8 51.2 0.96 0.96 0.89 30 54 725

7 22.3 33.0 22.4 49.0 76.0 76.4 0.91 0.90 0.83 32 53 719

8 4.1 43.5 43.6 56.1 98.3 96.6 0.90 0.91 0.90 36 56 769

9a 216.0 27.8 37.7 29.3 38.9 51.8 0.87 0.93 0.94 8 59 814

10 12.3 49.0 52.0 81.0 125.1 137.9 0.87 0.89 0.85 37 58 792

11 23.9 31.1 42.3 36.1 65.0 89.7 0.95 0.96 0.91 35 59 802

12 29.3 22.0 34.9 39.3 53.5 78.1 0.93 0.94 0.92 31 61 831

13 28.1 26.6 28.4 38.2 63.2 76.4 0.95 0.94 0.90 37 62 867

14 24.1 24.7 8.9 56.2 65.1 68.5 0.81 0.87 0.76 30 65 906

15 1.5 35.1 32.8 42.8 73.5 78.0 0.89 0.90 0.87 30 65 909

16 210.6 23.3 35.2 42.5 63.6 90.8 0.88 0.87 0.81 33 63 884

Mean 22.5 34.4 25.8 42.8 75.4 75.6 0.92 0.92 0.87 32 59 817

a Statistics discarded because of insufficient data samples.
b Sample size.
c Distance to radar (km).
d Beam height above ground (m).

TABLE 2. As in Table 1, but for locations in OLYMPEx.

Gauges/

Statistics

NB (%) NSE (%) CORR

Na Lr
b Hb

cRESID

CSU-

HIDRO

WSR-

88D QPE RESID

CSU-

HIDRO

WSR-88D

QPE RESID

CSU-

HIDRO WSR-88D QPE

1 232.6 242.7 252.6 44.6 53.0 61.9 0.87 0.88 0.93 113 51 561

2 218.3 229.9 242.2 26.2 39.8 47.9 0.94 0.88 0.94 112 52 639

3 220.4 233.2 235.8 32.9 45.4 44.9 0.91 0.88 0.93 108 28 342

4 23.6 217.2 226.5 26.0 37.6 36.8 0.94 0.90 0.95 112 50 612

5 224.8 233.5 248.0 34.0 43.5 56.2 0.92 0.88 0.91 114 50 612

6 222.3 237.0 246.0 34.9 50.5 57.1 0.94 0.91 0.93 103 58 815

7 218.5 231.6 240.8 29.2 41.0 49.8 0.95 0.93 0.95 109 42 519

8 228.3 233.7 256.4 40.9 44.4 71.1 0.95 0.95 0.92 108 17 194

Mean 221.1 232.4 243.5 33.6 44.4 53.2 0.93 0.90 0.93 110 43 537

a Sample size.
b Distance to radar (km).
c Beam height above ground (m).
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ground was calculated using the following equation,

suggested by the NWS (2017b) for the WSR-88D by

assuming standard atmospheric conditions:

H
b
5 1000

�
L

r
sinu1

L2
r

2nR
e

�
1H

a
2E

b
. (17)

Here,Hb is the height from the radar beam centerline

to the ground (m); Lr is the distance from the radar to

the rain gauge site (km); u is the radar elevation angle

(taken as 0.58 in this study); n is the refractive index

(assumed as 1.21); Re is the radius of Earth (taken as

6371km); andHa and Eb are the radar antenna height

and the ground elevation of the rain gauge site above

mean sea level (m), respectively. The Ha values were

found from the NWS (NWS 2016), and the Eb values

were obtained using the one-third arc-second ground

elevation data from theU.S.Geological Survey (USGS

2017). It can be seen from this figure that, for the rain

gauges with similar Lr and Hb values, while the NSE

values are similar for both field campaigns, the absolute

values of NB are significantly lower for MC3E than

for OLYMPEx (except for gauge 10 of MC3E as

discussed above). Particularly, when Lr is larger than

45km, themeanNB values for theRESID estimations

are 22.5% for MC3E and 220.3% for OLYMPEx.

This significant difference may be due to MC3E and

OLYMPEx having different rainfall characteristics.

The percentages of the radar observations that used

different cost functions in RESID estimations and

different rain-rate estimators in CSU-HIDRO estima-

tions are presented in Table 4. As can be seen in this

table, while the RESID estimations utilized the

CF(Zh, Zdr) cost function for nearly 70% of the time

in MC3E, the most frequently used cost function in

OLYMPEx was CF(Zh) (;62% of the time). This

difference in the cost function usage is because of a

larger number of small Zh (,38dBZ) and Zdr

(,0.5dB) values in OLYMPEx than MC3E (see

Fig. 2). The larger errors in RESID estimations in

OLYMPEx than inMC3Emay be associated with the

smaller Zh and Zdr values in OLYMPEx, which typ-

ically represent rainfall events with a presence of

abundant small drops (e.g., drizzle). This is consistent

with the meteorological conditions observed in the

two field campaigns.

3) CSU-HIDRO performed better thanWSR-88DQPE

for some of the cases (see the statistical results

presented in Tables 1 and 2). The performance of the

CSU-HIDRO was indeed expected to be better than

that of theWSR-88DQPE. It is becauseCSU-HIDRO

is an algorithm that utilizes a combination of rain-rate

estimators (see Fig. 1) to optimize the rainfall
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estimations (Cifelli et al. 2011), whereas WSR-88D

QPE uses only theR(Zh, Zdr) estimator [see Eq. (3)]

for liquid precipitation. TheWSR-88D QPE estima-

tions may suffer from the measurement errors when

Zdr values are relatively small. Moreover, it has been

reported that when the Kdp values are relatively

large, the rain-rate estimators using Kdp have the

lowest amount of errors as compared to the other

estimators (Bringi and Chandrasekar 2001; Cifelli

et al. 2011). A lack of using such estimators inWSR-

88D QPE may lead to less accurate rainfall estima-

tions. Nevertheless, all of these rain-rate estimators

were derived based upon the gamma DSD assump-

tion. Our preliminary comparisons of the measured

DSDs with the gamma DSD indicated that this

assumption may underperform for some of the

rainfall events in bothMC3E andOLYMPEx, which

may have caused CSU-HIDRO to perform worse

than WSR-88D QPE (;25% of the cases for MC3E

and OLYMPEx combined; see Tables 1 and 2). The

deviation of the measured DSDs from the gamma

distribution assumption has been reported in a num-

ber of studies (e.g., Zrnić et al. 2000; Mallet and

Barthes 2009; D’Adderio et al. 2015; Adirosi et al.

2015, 2016). Among these studies Adirosi et al. (2015,

2016) investigated the accuracy of four different

probability distribution functions (i.e., Pareto, log-

normal, gamma, and Weibull distributions) in mod-

eling the measured DSDs at three of the GPM field

campaigns. Their results indicated that, in general, the

distribution functions with a lighter tail (i.e., thinner

than the tail of an exponential distribution, e.g.,

gamma distribution) showed a better agreement with

the measurements. Nevertheless, there were also

FIG. 7. (left) NB and (right) NSE for RESID estimations as a function of (a),(b) Lr and (c),(d) Hb for MC3E

and OLYMPEx field campaigns. Open circles represent MC3E data and open triangles represent OLYMPEx

data (see the legend). Each marker represents data for an individual rain gauge.
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DSD measurements from these field campaigns that

showed significant deviations from the light-tailed

distributions. The deviations from the assumed DSD

form may also explain the increased errors of the

RESID algorithm in OLYMPEx, as the simulated

DSDs used in RESID are all gamma DSDs. When

comparing the performance of the CSU-HIDRO and

the WSR-88D QPE algorithms, one may notice that

some of the NB values for CSU-HIDRO are higher

than the numbers reported in Cifelli et al. (2011), and

the NSE values for WSR-88D QPE are close to or

larger than 100% for a few cases (see Tables 1 and 2).

The reason for these is that comparisons in this study

were rather stringent—hourly rainfall accumulations at

each of the individual rain gauge locations were com-

pared. Note that algorithms overestimate (with posi-

tive NBs) and underestimate (with negative NBs) rain

rates at different times and different locations with

varying standard errors. Comparing rainfall accumu-

lations with longer durations (e.g., per event) and at

multiple locations combined tends to balance the

standard error and reduce the NB value in an absolute

manner. Taking this fact into account, the NSE values

for WSR-88D QPE are comparable to those reported

in Giangrande et al. (2014).

4) It can be seen from Table 1 that RESID has both

positive and negative NB values, which indicates

that it overestimated rainfall accumulations for

some cases and underestimated them for the others.

However, all of the NB values for the CSU-HIDRO

and the WSR-88D QPE estimations are positive in

MC3E and negative inOLYMPEx (see Tables 1 and

2). This finding indicates that estimations from these

two algorithms always overestimated the rainfall

accumulations inMC3E but underestimated them in

OLYMPEx. As presented in Table 4, the most fre-

quently used rain-rate estimators by CSU-HIDRO

inMC3E andOLYMPEx areR(Zh, Zdr) andR(Zh),

respectively. Here it is important to reiterate that

R(Zh, Zdr) is the only estimator used by the WSR-

88D QPE to estimate liquid rainfall. Giangrande

et al. (2014) discussed that KVNX products over-

and underestimated radar rainfall in MC3E at rela-

tively low and high rain gauge accumulations, re-

spectively. This finding is in agreementwith whatwas

observed here, that the overestimations by CSU-

HIDRO and WSR-88D QPE in MC3E were caused

by the usage of R(Zh, Zdr), which overestimated at

relatively low rainfall accumulations (see Figs. 5, 6).

The underestimation ofR(Zh) for events with a large

number of small drops (i.e., low Zdr values; see the

discussion above)was also reported (e.g., Ryzhkov et

al. 2005a), and it is also consistent with the findings ofT
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our study for OLYMPEx. The causes of these over-

and underestimations may be explained by Fig. 8.

This figure presents two probability density functions

(PDFs) of the log10(Nw) values calculated using the

DSD measurements from a two-dimensional video

disdrometer (2DVD; Kruger and Krajewski 2002) in

both MC3E and OLYMPEx. The distance from the

disdrometer to rain gauge pair 1 inMC3E was about

1km, and the disdrometer was collocated with rain

gauge pair 3 in OLYMPEx (see Fig. 3). The DSD

data that were used to plot Fig. 8 correspond to the

same measurement periods as the radar and the rain

gauge data that were utilized in this study. The Nw

values were computed using the following equation

(Bringi and Chandrasekar 2001):

N
w
5

3:674

pr
w

 
103W

D4
0

!
(mm21 m23) , (18)

where rw is the water density (g cm23) and W is the

liquid water content (gm23). TheW andD0 values were

calculated using

W5
pr

w

63 103

ð‘
0

D3N(D) dD5
pr

w

33 103

ðD0

0

D3N(D) dD .

(19)

Similar to the DSD simulation procedure detailed in

section 2, the range of the log10(Nw) values selected for

the derivation of the CSU-HIDRO/WSR-88DQPE rain-

rate estimatorswas between 3 and 5 (forNw inmm21m23;

Bringi and Chandrasekar 2001). However, this range

does not exactlymatch (i.e., skewed) the log10(Nw) ranges

calculated from 2DVD measurements at the field cam-

paigns. Most (.90%) of the measured log10(Nw) values

were between 2.3 and 4.3 in MC3E and between 3.3 and

5.3 (for Nw inmm21m23) in OLYMPEx (see Fig. 8). A

comparison of rain-rate estimations using R(Zh) derived

using different ranges of log10(Nw) (keeping the same

value ranges for other parameters) is presented in Fig. 9.

It can be seen from Fig. 9 that for a given Zh, the esti-

mated rain rate R increases with the following order

of the log10(Nw) range: 2.3–4.3 (from MC3E measure-

ments), 3.0–5.0 (used for developing CSU-HIDRO/

WSR-88D QPE estimators), and 3.3–5.3 (from OLYMPEx

measurements) (for Nw inmm21m23). Similar behav-

iors were observed for other rain-rate estimators. This is

likely the reason why CSU-HIDRO and WSR-88D

QPE overestimated the rainfall accumulations for MC3E

but underestimated them for OLYMPEx. Therefore,

the over- and underestimation issue discussed above

was likely caused by the regression analyses using the

selected ranges of the gamma distribution parameters.

FIG. 9. Comparison of rain-rate estimations using the esti-

mator R(Zh) derived using different ranges of log10(Nw) (Nw

values are in mm21 m23).

FIG. 8. PDFs of estimated log10(Nw) values using 2DVD mea-

surements from (a) MC3E and (b) OLYMPEx field experiments.
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Since regression analysis was not incorporated in the

development of RESID, this issue is inherently absent in

RESID. This may also partly explain why RESID out-

performed CSU-HIDRO and WSR-88D QPE in esti-

mating the rainfall accumulations at both of the field

campaigns.

5. Summary and conclusions

We developed a new rainfall estimation algorithm,

RESID, for dual-polarization radars. We showed that the

RESID algorithm, which utilizes a database of simulated

gamma DSDs and a group of carefully selected cost func-

tions, outperforms the benchmark CSU-HIDRO and

WSR-88D QPE algorithms in estimating the hourly rain-

fall accumulations for the rain events observed during the

MC3E and the OLYMPEx field campaigns. The likely

reasons for the improved estimations by RESID are the

fact that this hybrid algorithm is not subject to the re-

gression uncertainties associated with other algorithms and

reduces the potential impacts of noisy radarmeasurements.

Nevertheless, like all other algorithms, RESID has

shortcomings. There are two major error sources for

RESID estimations: one is related to the gamma distri-

bution assumption in the DSD simulations and the other

one is related to the cost functions that use fewer than

three radar observables. Although the gamma distribu-

tion is nowadays awidely used distribution to describe the

DSD shape, the exponential (Marshall and Palmer 1948),

lognormal (Feingold and Levin 1986), and Gaussian

(Maguire and Avery 1994) distributions are also possible

distribution functions to model the observed DSDs. In

this study, the values of the cost functions were not a

major focus.Although larger errors in rainfall estimations

were expected for larger values of the cost functions, the

majority (;95%) of the cost function values observed in

this study were less than 0.001, which indicates a close

match between the measured and the simulated DSDs

(seeAdirosi et al. 2014). If the cost function values can be

reduced by using a simulatedDSDdatabase of a different

distribution function, the radar rainfall estimations may

be further improved. Moreover, we used different cost

functions under different conditions to reduce the impact

of the radar measurement noise. The reason we used the

single- and double-measurement cost functions was be-

cause we found out that the errors introduced by these

cost functions were smaller than the errors introduced by

the triple-measurement cost function when a particular

radar observable(s) was not reliable. If the RESID were

developed for DSD retrievals, the use of the triple-

measurement cost function would have been advanta-

geous over the single- and double-measurement cost

functions, as the triple-measurement cost function

provides more information. However, since RESID was

developed for radar rainfall estimations, it uses a set of

cost functions with a varying number of radar observ-

ables to reduce the effect of noisy radar measurements.

As such, while the selected simulated DSDs may not

necessarily match closely with the measured DSDs be-

cause fewer radar observables may have been used, the

rain rates calculated from these selected DSDs are ex-

pected to closely estimate the actual rain-rate values.

The RESID algorithm was thoroughly evaluated using

the observations from theMC3E and theOLYMPEx field

campaigns, and these evaluations showed favorable results

as discussed in detail in section 4. There is still potential for

further improvements of the algorithm. These improve-

ments may include development of new cost functions for

reduced radar observational uncertainties and a more ro-

bust scheme for homogeneity confinement of DSDs. Fur-

ther performance evaluations of RESID under different

environmental and meteorological conditions and at dif-

ferent geographic locations are also necessary. The im-

proved radar rainfall estimations usingRESIDare of great

practical significance in a wide variety of fields, including

flash-flood warning and management, water resources

management, and climate change evaluation.
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