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ABSTRACT

To provide ground validation data for satellite precipitation products derived from theGlobal Precipitation

Measurement (GPM) mission, such as IMERG, in cold seasons and where orographic factors exert strong

controls on precipitation, the Olympic Mountain Experiment (OLYMPEX) was conducted during winter

2015/16. By utilizing multiple observational resources from OLYMPEX, estimates of daily and finer-scale

precipitation are constructed at 1/328 spatial resolution over theOLYMPEXdomain. The estimates are based

on NOAA WSR-88D and gauge estimates as incorporated in NOAA’s National Severe Storms Laboratory

(NSSL) Q3GC product, augmented with an additional 120 gauges available during OLYMPEX. Few stations

are located in the interior of the Olympic Peninsula at elevations higher than about 500m, and in this part of

the domain the Variable Infiltration Capacity (VIC) hydrology model is used to invert the snow water

equivalent (SWE) estimates, derived from two NASA JPL Airborne Snow Observatory (ASO) snow depth

maps on 8–9 February 2016 and 29–30March 2016, for precipitation through adjustment of the precipitation-

weighting factor on a grid cell by grid cell basis. In comparison with this composite product, both IMERG

(version 04A) and its Japanese counterpart GSMaP’s (version 04B) satellite-only products tend to un-

derestimate winter precipitation, by 41% and 28%, respectively, over the entire domain from 1October 2015

to 30 April 2016. The underestimation is more pronounced for the orographically enhanced mountainous

interior of the OLYMPEX domain, by 57% and 48%, respectively. In contrast, IMERG and GSMaP storm

interarrival time statistics are quite similar to those estimated from gridded observations.

1. Introduction

Accurate measurements of precipitation are of

great importance to hydrologic prediction. For pre-

dictions over large watersheds, gridded precipitation

fields based on gauge data are one option (e.g., Daly

et al. 1994, 2008; Thornton et al. 1997; Cosgrove et al.

2003; Hamlet and Lettenmaier 2005; Livneh et al.

2015; Newman et al. 2015), but they have limitations,

including spatial heterogeneity in geographical cov-

erage of gauges and a lack of gauges in remote regions

and the developing world. Satellite-based pre-

cipitation products offer an alternative and have been

the subject of accelerated development in recent de-

cades, motivated in part by the launch of the U.S.–

Japan Tropical Rainfall MonitoringMission (TRMM)

in 1997 (Kummerow et al. 1998), and its successor, the

Global PrecipitationMeasurement (GPM) mission, in

2014 (Hou et al. 2014).

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JHM-D-17-

0076.s1.

Corresponding author: Dennis P. Lettenmaier, dlettenm@ucla.

edu

JANUARY 2018 CAO ET AL . 143

DOI: 10.1175/JHM-D-17-0076.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

https://doi.org/10.1175/JHM-D-17-0076.s1
https://doi.org/10.1175/JHM-D-17-0076.s1
mailto:dlettenm@ucla.edu
mailto:dlettenm@ucla.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Over the years, numerous studies have been performed

to evaluate satellite-based precipitation products through

comparisons with radar rainfall estimates (e.g., Stampoulis

et al. 2013; Gebregiorgis et al. 2017), gauge observations

(e.g., Mei et al. 2014; Prat and Nelson 2015; Miao et al.

2015), and merged radar and gauge rainfall estimates such

as the National Centers for Environmental Prediction

(NCEP) Stage IV (Lin and Mitchell 2005) products (e.g.,

Gourley et al. 2010; Mehran and AghaKouchak 2014).

Radar precipitation estimates are subject to errors from,

for example, radar calibration, beam blockage, range ef-

fects, and other causes (Hunter 1996). However, the main

drawback in mountainous regions is a lack of low-level

coverage due to terrain blockage (Maddox et al. 2002). As

noted above, gauge-based precipitation products may not

be reliable in areas with sparse gauge distributions (Henn

et al. 2015, 2018). Given that gauges provide accurate

point rainfall measurements while radar provides rainfall

estimates at a larger spatial coverage, a great deal of effort

has been devoted to development of techniques that

merge the two data sources, for example, mean field

bias (Berndt et al. 2014; Nikolopoulos et al. 2015), proba-

bility density function matching (Nikolopoulos et al. 2015;

Hasan et al. 2016), and geostatistical approaches including

kriging, cokriging, and kriging with external drift (KED;

Velasco-Forero et al. 2009; Berndt et al. 2014; Rabiei and

Haberlandt 2015). Despite the fact that integration of ra-

dar and gauge data exploits both of their strengths, its

performance may not be ideal in mountain areas due to

terrain blockage.

The most common techniques to infer spatial pre-

cipitation distributions from gauge observations over

complex terrains include interpolation using fixed oro-

graphic precipitation gradients (OPGs; e.g., as used

by Livneh et al. 2014) and based on residuals from

climatological maps of precipitation normals such as

Parameter-Elevation Regressions on Independent

Slopes Model (PRISM; Daly et al. 1994, 2008). Despite

the fact that PRISM generally captures spatial hetero-

geneity better than OPGs, its accuracy depends on the

quality and spatial density of gauges used in the

regressions, especially those at high elevations. Henn

et al. (2015) estimated basin-mean precipitation by

optimizing a precipitation multiplier and OPGs based

on streamflow observations via Bayesian inference for

several mountain basins with drainage areas ranging

from 60 to 1181km2 in the Sierra Nevada of California.

Their inferred annual basin-mean precipitation showed

up to 30% differences as compared with precipitation

derived from PRISM for these relatively small basins. In

some of the basins, they found that the PRISM-derived

precipitation was too low given the regional climate. An-

other consideration is that most extreme precipitation

events in the western United States are orographically en-

hanced, and many precipitation events are associated with

atmospheric rivers (ARs) accompanied by strong low-level

winds (e.g., Zhu and Newell 1994; Ralph et al. 2006;

Dettinger et al. 2011; Neiman et al. 2011). These conditions

lead to a nonstationary spatial distribution of mountain

precipitation from event to event. For example, Lundquist

et al. (2010) compared PRISMwith theOPGmethod in the

northern Sierra Nevada range. They found that both

methods failed to capture spatial precipitation patterns ad-

equately during years dominated by AR-induced pre-

cipitation events, when theOPGwas strongly influenced by

height and strength of barrier jets.

Over the last decade, several studies have been per-

formed that use remotely sensed snow data to help infer

the spatial distribution of precipitation. Durand et al.

(2008) andGirotto et al. (2014a,b) used satellite-derived

snow covered area (SCA) data, after converting to SWE

using a snow depletion curve, to update the precipitation

disaggregation weights in a land surface model via

smoothing methods. Livneh et al. (2014) used the sea-

sonal peak value of SWE via reconstructions based on

satellite SCA during the ablation season as the clima-

tology to infer the spatial distribution of cold season

precipitation in several mountain basins tributary to the

upper Colorado River. Satellite-based SCA, however,

usually is highly uncertain in areas with dense forest

canopy (e.g., Maurer et al. 2003). The NASA JPL Air-

borne Snow Observatory (ASO) products (Painter et al.

2016) have much higher spatial resolution and higher ac-

curacy than previously available remote sensing methods

(Lettenmaier 2017). Henn et al. (2016) used streamflow

observations, ASO snow data, and gauge precipitation

to infer basin-mean precipitation by estimating the OPG

in a hydrology model in the upper Tuolumne River basin

in the Sierra Nevada of California via a Bayesian param-

eter inference method. They focused on basin-mean pre-

cipitation instead of spatial distribution of precipitation.

Launched on 27 February 2014, NASA–JAXA’s

GPM is a joint U.S.–Japan satellite mission intended

to provide the next generation of precipitation estimates

globally. A major advance in GPM relative to its pre-

decessor TRMM is that its orbit allows observations of

AR events, most of which have landfalls too far north to

be tracked by TRMM. The Olympic Mountain Experi-

ment (OLYMPEX) was a GPM ground validation study

that took place on theOlympic Peninsula ofWashington

during winter 2015/16 (Houze et al. 2017). One goal of

the OLYMPEX campaign was to better assess pre-

cipitation products based on GPM and other satellites,

especially in a cold season environment where oro-

graphic factors exert strong controls on precipitation.

The observational resources deployed include rain
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gauges, radars, aircraft, and other meteorological sen-

sors (Houze et al. 2017).

Orographic precipitation in the Olympics has been

examined previously by a number of modeling studies

(e.g., Barros and Lettenmaier 1993; Colle and Mass

1996; Leung and Qian 2003). The fifth-generation

Pennsylvania State University–NCAR Mesoscale Model

(MM5), has been run at resolutions of 4km [recently in-

creased to 1.33km using the Weather Research and

Forecasting (WRF) Model] over the Pacific Northwest

since 1997 (Mass et al. 2003). Anders et al. (2007) and

Minder et al. (2008) evaluated the performance of these

products over the Olympics. They found that the model

simulated thewindward ridge–valley pattern of orographic

precipitation well at seasonal time scales, but there were

major errors for individual events. They attributed this to

inaccurate initial and boundary conditions, which were

difficult to improve because many of the heavy pre-

cipitation events were associated with ARs originating far

from the midlatitudes. Furthermore, NWPs generally are

better at simulating synoptically forced rainfall, but are less

suited to simulating convective rainfall events and snowfall

(Ebert et al. 2007; Minder et al. 2008).

Here, we attempt to develop the best available pre-

cipitation product for the evaluation of GPM-based

precipitation products such as NASA’s Integrated

Multisatellite Retrievals (IMERG) product (Huffman

et al. 2015) over the OLYMPEX domain, which for our

purposes we define as the Olympic Peninsula plus the

Chehalis River basin (see Fig. 1). The availability of

multiple resources of observations from OLYMPEX

allows us to address in detail the following question:

What is the ability of IMERG products to estimate

precipitation rates in cold seasons over complex terrain,

and in particular, over the OLYMPEX domain?

To answer this question, we derive a daily pre-

cipitation product at 1/328 spatial resolution fromOctober

2015 to April 2016.We use different strategies to estimate

precipitation for low and high elevations. For the former,

where radar precipitation estimates are of better quality

and rain gauges are relatively abundant, we estimate

precipitation by merging radar and gauge precipitation

products.

In contrast to the lowlands, much of the interior of the

Olympic Mountains is above 500m elevation with sub-

stantial winter snow accumulations, but few precipitation

observations. For these areas where radar coverage is

restricted by terrain blockage, we infer precipitation us-

ing the Variable Infiltration Capacity (VIC) land surface

model (Liang et al. 1994) driven by gridded observations

and backward adjusted using SWE estimated from snow

depth measurements produced by two flights of ASO

(Painter et al. 2016). We then merge the SWE-based

winter precipitation estimate for the high-elevation areas

with the radar–gauge product for the lowlands and eval-

uate IMERG precipitation over our entire domain.

Our product is based on a combination of observa-

tions of various types and modeling and is intended to

provide a best estimate of precipitation over the

OLYMPEX domain. It can be used by algorithm de-

velopers to meet the primary objective of OLYMPEX,

which is ground validation of GPM products. In de-

veloping our product though, we have made use of ASO

snow products for the first time in a mountain maritime

environment with dense forest canopies and have in-

tegrated (low elevation) precipitation data from a

number of sources, including different gauge networks

and NWS precipitation radars.

2. Study region and data

The Olympic Peninsula is situated in the northwest

corner of Washington State, bounded by the Pacific

Ocean to the west, the Straits of Juan de Fuca to the

north, and Puget Sound to the east (see Fig. 1). Eleva-

tions range from sea level to 2427m at the top of

FIG. 1. Precipitation gauge locations. The location of the

Langley Hill radar is marked by a black star, and the red shading

shows its coverage.
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Mt. Olympus in the interior of the Peninsula. Precipita-

tion in this area is winter dominant, with over 80% of the

annual total (on average over our domain) falling between

October andApril. The southwestern andwestern slopes of

the Olympic Mountains are covered by dense temperate

rain forest and receive plentiful winter precipitation due to

orographic enhancement of moisture accompanied by

strong southwesterly winds. Annual precipitation here

ranges from as much as 2500mm in the lowlands to over

5000mm in the highermountain elevations. In contrast, the

northeastern side of the mountains receives much less

precipitation due to the rain shadow effect, with annual

precipitation as low as 400mm in someparts of our domain.

The study region is within the range of two NOAA

WSR-88D radars. The Langley Hill site on the Wash-

ington Coast provides coverage for much of the west

side of our domain, although Langley Hill radar is

blocked by terrain over most of the interior of the

Olympic Mountains (see Fig. 1). A small portion of the

northeastern part of our domain is within the range of

the Camano Island WSR-88D site in the northern

Puget Sound.

The radar product we used is the radar quantitative

precipitation estimation (QPE) product (denoted as

Q3GC) from NOAA’s National Severe Storms Labo-

ratory (NSSL) Multi-Radar Multi-Sensor (MRMS)

system (Zhang et al. 2011, 2016). This product is bias

corrected using NOAA Hydrometeorological Auto-

mated Data System (HADS) gauges. It is a national

mosaic product, so both the Langley Hill and Camano

Island radar sites are incorporated. NSSL also

generates a Mountain Mapper QPE (Q3MM) product,

using the PRISM monthly climatology as a background

precipitation distribution map to interpolate HADS

precipitation, for areas with poor radar quality (Zhang

et al. 2016). We combined these two products as a

baseline into which we incorporated additional (i.e.,

other than HADS) gauge observations that were avail-

able to us during the OLYMPEX experiment period.

In addition to the HADS gauges embedded in the

NSSL Q3GC and Q3MM products, we used gauge

precipitation from NOAA’s Cooperative Observer

Program (COOP) network; the Community Collabora-

tive Rain, Hail and Snow Network (CoCoRaHS); Re-

mote Automatic Weather Stations (RAWS); the

Automated Surface Observing System (ASOS); SNO-

TEL; and gauges installed during the OLYMPEX pe-

riod (denoted as ‘‘OLYMPEX gauges’’), mainly in the

Quinault and Chehalis River basins (see Fig. 1 for lo-

cations). There is some overlap between HADS and the

RAWS network. We checked the gauge list and elimi-

nated the ones that were already in the HADS network

in the process of gauge selection.

Most stations are located at elevations lower than about

500m. Much of the interior Olympic Mountains are above

500melevationwith substantial winter snow cover, butwith

few precipitation measurements [four National Resources

Conservation Service (NRCS) SNOTEL sites measure

SWE using snow pillows, in addition to precipitation and

temperature]. We obtained snow depth maps at 3-m reso-

lution for the interior of the Olympic Peninsula from two

ASO flights on 8–9 February 2016 and 29–30 March 2016.

In addition, we obtained snow depth and density measure-

ments on 8 February 2016 and 7April 2016 from nine snow

monitoring sites established for the OLYMPEX campaign

(for details, see Currier et al. 2017). COOP, ASOS, and

SNOTEL stations have daily minima and maxima obser-

vations for temperature in addition to precipitation.

SNOTEL temperature data were biased warm at cold

temperatures, and the biases were corrected based on

Currier et al. (2017). In addition, we used hourly tempera-

ture data from 26 sites, which had HOBO U23 Pro v2

temperature/relative humidity sensors installed during the

OLYMPEX period (see Fig. 2). Wind speed data, required

as the VIC forcing, were obtained from the NRCS Water-

hole SNOTEL site. This was the only SNOTEL site among

the four at which wind measurements were available.

3. Methods

a. Precipitation estimation at lower elevations

As noted above, precipitation radar suffers from severe

terrain obstruction over most of the Olympic Mountains.

NSSL has developed a mosaic Radar Quality Index

(RQI) product to indicate the potential uncertainties of

radar precipitation related to beam obstruction due to

terrain blockage and intersection with the melting layer.

Its value ranges from 0 to 1, indicating uncertainty from

high to low. To obtain realistic initial precipitation fields

over the entire domain, we first used NSSL’s Q3MM to

replace high-elevation pixels of Q3GC with RQI lower

than 0.85, which basically delineated themountain area at

elevations higher than 500m. We rescaled Q3GC pixels

with RQI between 0.85 and 0.9 by a linear interpolation

between the seasonal mean of Q3GC and Q3MM for

better spatial continuity.

Once we obtained a (subjectively determined) plausi-

ble initial precipitation field, we augmented the merged

product with additional gauges in the region. We in-

corporated gauges that produced useful data during at

least 50% of the period from 1 October 2015 to 30 April

2016. A total of 120 gauges met this criterion, including 7

COOP gauges, 77 CoCoRaHS gauges, 1 RAWS gauge,

10ASOS gauges, 21OLYMPEXgauges, and 4 SNOTEL

gauges (see Fig. 1). Most of these gauges are below 500m
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elevation. We excluded the HADS gauges because they

had already been incorporated into the Q3GC and

Q3MM products. We considered daily precipitation as

occurring between 0000 and 2400 Pacific standard time

(PST; UTC2 0800). For COOP and CoCoRaHS gauges

with only daily records, we proportioned them, according

to their observation time, to 24h based on hourly Q3GC.

The rest of the gauges had hourly records, so they were

directly accumulated to daily in PST. OLYMPEX rain

gauges were quality controlled by the NASAOLYMPEX

group. Because these NASA gauges were dual-platform

tipping buckets, we used the average of each pair of gauges

if they both had no quality flags for malfunctioning or

possible ice/snow and if their daily precipitation differed

by less than 10% for days when precipitation exceeded

10mm; otherwise, the precipitation data weremarked as

invalid. We performed a simple quality control (QC) for

all gauges to screen for outliers, including improbable

zero values and unusually high daily values, by com-

paring each gauge with the neighboring four gauges. In

particular, for any day, if the precipitation at the target

(of the QC) gauge was zero but its surrounding four

gauges all showed significant precipitation, the target

gauge was flagged as missing. If precipitation at a se-

lected gauge exceeded the maximum of the surrounding

four gauges by 100% (i.e., double), it was flagged as

missing as well.

We used the conditional merging (CM) method of

Sinclair and Pegram (2005) to integrate the radar and

gauge rainfall estimates. This geostatistical approach

maintains the mean field characteristics from the gauges

while preserving the spatial rainfall pattern from radar

and has been found to be computationally efficient and

robust (Berndt et al. 2014). We used the CM method

because it outperformed KED in two recent studies

(Berndt et al. 2014; Rabiei and Haberlandt 2015). The

first step in CM is to interpolate gauge observations and

radar estimates at gauge locations to grid points. For this

purpose, we used the synergraphic mapping system

(SYMAP) algorithm (Shepard 1984). We then added

the deviation between interpolated and observed radar

rainfall values at each grid point to the rain gauge in-

terpolation field. Because of the limited number of sta-

tions, we assessed the accuracy of the merging method

by systematically removing individual stations one at a

time and evaluating the merged product at the station

grid against the removed station.

b. Precipitation estimation at high elevations

1) GRIDDED TEMPERATURE

We selected 335 grid cells with long-term average

1 April SWE over 10mm as our modeling domain. We

used an interpolationmethod described byMolotch (2009)

FIG. 2. High-elevation site locations. The blue rectangle shows the ASO domain.
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to grid temperature. There were 4 SNOTEL sites and 16

HOBO sites at elevations higher than 650m in our do-

main (see Fig. 2). We first estimated the average daily

maximum and minimum temperature at each grid cell

within the modeling domain by linear regression be-

tween the observations at these 20 sites and their ele-

vations. At each station, we calculated residuals by

subtracting daily observations from their predicted av-

erage daily values. These residuals were interpolated to

model grids by SYMAP. We obtained gridded temper-

ature by adding the gridded residuals to the predicted

average temperature at each grid. We assessed the ac-

curacy of this interpolation technique by removing in-

dividual stations one at a time (see Fig. S1 in the online

supplemental material for results), similar to themethod

described in section 3a.

2) ASO SWE MAPS

Because of the relatively dense forest canopy over

much of the OLYMPEX domain, ASO lidar ground

point densities under canopy in this area (especially at

intermediate elevations) were lower than at other ASO

study sites, which increased the vegetation-induced er-

rors in snow depth retrievals (K. Bormann et al. 2018,

unpublished manuscript). The ground point densities

decreased nonlinearly with increased canopy density as

well as vegetation heights, with great reductions occur-

ring after tree heights exceeded 5m (K. Bormann et al.

2018, unpublished manuscript). However, the ASO

team is working on algorithm adjustments to mitigate

these impacts to the degree possible.

We evaluated the possible underestimation of SWE

under canopy. We first calibrated VIC snow roughness

lengths and rain–snow transition temperatures at

SNOTEL sites [see section 3b(3) for details]. We des-

ignated ‘‘open grid cells’’ as grid cells that are free of

vegetation. We identified the open grid cells at the 3-m

ASO scale and adjusted precipitation and temperature

lapse rates to force the VIC SWE to match that inferred

from ASO. We then took essentially the same pre-

cipitation and temperature and forced the VIC snow

model for forested pixels with the Storck (1999) pa-

rameterization and compared the inferred undercanopy

SWE with the VIC estimates. If they did not match to

within a tolerance that we specified (see SM3 in the

supplemental material), we adjusted (mostly increased)

the undercanopy SWE using a Bayesian adjustment

procedure.

We implemented the undercanopy SWE adjustment

procedure as follows. We first used an index station

method (motivated by the large number of 3-m grid

cells) to generate a 3-m snow density map in order to

convert ASO snow depth to SWE. Within each 1/328

grid, we first divided the 3-m snow depth data into

multiple categories by elevation bands with an interval

of 50m and into slope bands with an interval of 158. We

calculated the distribution of snow depths in open

areas within each category and selected some index

pseudostations from each 0.1 quantile for modeling

(about 300 points within each 1/328 grid). For each index

station, we ran the VIC snow model with precipitation

and temperature forcings lapsed by elevation, and we

adjusted the precipitation lapse rate and temperature

lapse rates to force the simulation to match the observed

snow depth values, from which we obtained snow den-

sities at the index pseudostations. We bias corrected

simulated densities by developing a linear relationship

between snow depth and density simulation errors at

13 observation sites (see Fig. S2) using in situ snow

density measurements taken on 8 February 2016 and

7 April 2016. Since ASO surveys were conducted on

9 February 2016 and 29 March 2016, the density

change from 29 March 2016 to 7 April 2016 was sub-

tracted from the in situ measurements on 7 April 2016

before its use, by taking the difference in snow density

observations at the nearest SNOTEL sites between

these two dates.

With this bias-corrected snow density map, we con-

verted ASO snow depth maps to ASO SWE maps.

Given the changes of snow density in the bias correction,

we ran the VIC snow model for each index pseudosta-

tion and slightly adjusted the precipitation and tem-

perature lapse rates that we had previously obtained to

force the simulations to match the ASO SWE values.

After our simulations matched the ASO SWE at index

stations in the open areas, we reran the model with the

canopy interception parameter obtained from field ex-

periments reported by Storck (1999).

Here we assumed that the distribution of SWE in a

vegetated grid cell was well represented by the SWE in

the surrounding (within a distance of 30m) vegetated

grid cells. For the vegetated pixels, if the ASO SWE fell

in the lower 5% of the distribution of its surrounding

VIC estimates within a 30-m distance, we adjusted the

ASO SWE using the Bayesian conditional probability

approach in a way similar to Coccia et al. (2015). For a

3-m undercanopy grid cell that we deemed to require

adjustment, we estimated its rank distribution (after

normal quantile transformation) conditioned on theVIC

undercanopy simulations of its surrounding grid cells

within a 30-m distance. We randomly drew a value from

the rank distribution and then mapped it back to its

original ASO distribution, which was used to update the

suspect grid cell. We conducted a sensitivity test on the

threshold value, and results were shown in section SM3

of the supplemental material.
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After we adjusted the ASO 3-m SWE maps, we ag-

gregated them to 1/328 spatial resolution. About 1/3 of

the grid cells in our domain had no ASO observation on

8 February 2016 (a brief weather window closed, and

ASO observations were curtailed over part of the do-

main due to weather conditions; see Fig. S4).We filled in

these grids based on a linear regression between ASO

estimates for observed grid cells on 8 February and

29 March, which had a correlation of 0.93.

3) PRECIPITATION MULTIPLIER

With an initial precipitation field, gridded tempera-

ture field at higher elevations, and observed SWE maps

on 8 February and 29 March 2016, we were able to infer

precipitation using the VIC model driven by observed

forcings and adjusted by ASO SWE. We first calibrated

VIC snow model parameters at SNOTEL grids. SNO-

TEL sites not only measure snow variables, but also

provide precipitation and temperature observations.

We used the forcings (precipitation and temperature)

from SNOTEL observations to calibrate the rain–snow

temperature thresholds and snow roughness lengths in

VIC, which were sensitive parameters as suggested

by Andreadis et al. (2009), by minimizing the SWE

simulation error at the four SNOTEL sites. Currier et al.

(2017) note that these sites were extremely sensitive

to longwave parameterization, so we calibrated the VIC

longwave algorithm based on observations at the

Snoqualmie Pass, Washington, energy balance tower

(approximately 100km distant from the OLYMPEX

domain; Wayand et al. 2015). In addition, we calibrated

the maximum interception capacity by comparing sim-

ulated SWE averaged over the 1/328 grid cell with ASO

SWE after the SNOTEL SWE was matched by the

simulated SWE in the corresponding snowband.

We used a moving window of 3 3 3 grids of 1/328
resolution to search for optimal precipitation factors for

the two periods ending with the 8 February and

29 March 2016 ASO survey dates. We adjusted the

precipitation multiplier between 0.1 and 2.0 with an in-

terval of 0.01 to force the simulated SWE to match the

ASO SWE. These searches were conducted for the two

periods separately given that the spatial patterns of

precipitation varied with time. We used the best result

obtained from the first period as the initial condition for

the second period.

4. Results

a. Precipitation estimation at low elevations

Our radar and gauge merged precipitation map is

shown in Fig. 3b. The merged product maintains the

mean field characteristics from gauges. Because we in-

cluded more gauges in the mountain areas than does the

Q3MM product, precipitation in these areas is different

than in Q3MM (mostly increased). Figure 4 shows the

assessment of the radar and station precipitation merg-

ing technique. Most of predicted precipitation at station

FIG. 3. Mean daily precipitation (from 1 Oct 2015 to 30 Apr 2016) before and after augmentation with

additional gauges.
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locations matches the observations relatively well, with

correlations mostly higher than 0.9 and normalized

RMSE (NRMSE) mostly smaller than 0.8 over the time

period from 1 October 2015 to 30 April 2016. Predicted

precipitation at elevations higher than 500m, however,

shows greater differences from the (relatively few) sta-

tions, with correlations ranging from 0.86 to 0.92 and

NRMSE ranging from 0.51 to 0.86.

b. Precipitation estimation at high elevations

The result of undercanopy SWE adjustment averaged

over 1/328 grid cells are shown in Fig. S3 and indicate

increases up to 0.23m in some grid cells (of course, the

effects of adjustment generally are much larger at the

3-m ASO pixel scale). We aggregated the 3-m ASO

SWE maps to 1/328 spatial resolution in order to adjust

the grid precipitation patterns (see Fig. S5). Before

precipitation pattern adjustment, we calibrated the VIC

snow model (snow roughness and rain–snow transition

temperature) at the four SNOTEL grids using SNOTEL

observed precipitation; the calibration results are shown

in Fig. 5. We compared VIC SWE with ASO 1/328 SWE

on the two ASO survey dates with canopy (whose per-

centage is based on a land cover map and percent tree

canopy map from the National Land Cover Database)

and SNOTEL observations with VIC SWE in the cor-

responding snowbands with canopy removed, both of

which matched relatively well.

Figure 6 shows precipitation adjustment factor results.

For the first period ending on 8 February 2016, adjust-

ments based on ASO SWE generally decreased pre-

cipitation, with factors ranging from 0.49 to 1.33. The

mean precipitation factor averaged across the modeling

grids was 0.86. For the second period, the adjustment

factors increased along the southwestern and western

slopes, ranging from 0.38 to 1.75 over all modeling grids,

with a mean of 1.23. The accumulated precipitation av-

eraged over the mountain areas during the period up to

the first ASO flight (from 1 October 2015 to 8 February

2016) was 2116mm and 2482mm with and without ad-

justment, respectively, and for the period between the

two ASO flights’ (from 9 February 2016 to 30 April

2016) mountain precipitation was 1291mm with and

1034mm without adjustment. These are averages; dif-

ferences at individual grid cells were considerably larger

in many cases. Overall, the effect of utilizing the ASO

data on the precipitation estimation in the mountain

area of the OLYMPEX domain was substantial.

We evaluated the adjusted precipitation factors at 11

snow depth sites (see Fig. 7). The simulations matched

ASO snow depth measurements reasonably well at 1/328
spatial resolution. A few sites (such as Mount Hopper

and Mount Seattle East and West) show greater bias on

8 February 2016, possibly due to errors in density esti-

mation and spatial representation issues of in situ snow

sites. For example, Mount Hopper had a snowdrift, but

the snow pole was outside of the snowdrift. We also

compared simulated time series of snow depth in the

corresponding snowbands with snow pole measure-

ments (see Fig. 7). Some of the snow poles bent after

23 December 2015 and therefore had greater un-

certainty (Currier et al. 2017). The simulations matched

the pole observations plausibly well, but missed the late

December storm, and the model results generally have

smaller temporal variations than the observations, pos-

sibly due to the VIC new snow density algorithm.

c. Evaluation of the IMERG product

As described in section 1, our ultimate goal was to

compare IMERGprecipitation with our ‘‘best estimate’’

precipitation fields over the OLYMPEX domain. To do

so, we aggregated our final daily precipitation map

FIG. 4. Assessment of radar and station precipitation merging technique by systematically

removing individual stations one at a time and comparing the derived grid precipitation es-

timate with each station removed with its observation.
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(Fig. 6f) from 1/328 to the IMERG 0.18 spatial resolu-
tion. We compared spatial patterns of the IMERG

satellite-only product (version 04A), as well as the cor-

responding Japanese algorithm Global Satellite Map of

Precipitation (GSMaP; Okamoto et al. 2005; Kubota

et al. 2007; Aonashi et al. 2009; Ushio et al. 2009)

satellite-only product (version 04B), with our reconstru-

cted product on a monthly basis over winter 2015/16

(Fig. 8). As the figure shows, over the northern part of

the OLYMPEX domain, IMERG misses many of the

FIG. 5. SWE comparison between simulation and observations at four SNOTEL sites after

calibration. SNOTELDungeness andMount Crag are not within the ASO domain. TheASO

data were incomplete for the 1/328 grid where SNOTEL Waterhole was located on 8 Feb

2016. The solid green line represents VIC SWE of the snowband where SNOTEL is located

with canopy removed, and the dashed green line represents VIC SWE of the 1/328 grid cell

with canopy (whose percentage is based on a land cover map and percent tree canopy map

from the National Land Cover Database).
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orographic precipitation patterns that are evident in our

composite product. GSMaP performs better than IMERG

in capturing orographic precipitation patterns in most of

the months, but with a shift toward the west. We divided

our study domain into six subregions according to their

climatology and precipitation patterns (see Fig. 9). We

evaluated storm interarrival times for hourly IMERG and

GSMaP data, relative to hourly Q3GC (with temporal

information mainly from radar) at lower elevations and

Q3MM (with temporal information from HADS gauges)

at higher elevations (see Fig. 10). For this purpose, hourly

precipitation over a subdomain was treated as zero, if it

was below 0.1mm. Both IMERG andGSMaP capture the

temporal frequency of storms relatively well in most sub-

regions except for region IV(b) (eastern Olympic Moun-

tains interior), which may be partly due to the small

number of gauges over this area incorporated in Q3MM.

In addition, we compared the three products on daily

and seasonal scales (Figs. 11 and 12). GSMaP shows a

slightly better match with our composite product com-

pared to IMERG on daily and seasonal scales. The un-

derestimation of both IMERG and GSMaP is higher in

mountainous region IV and is obvious especially in the

mountainous interior of the OLYMPEX domain, where

the underestimation is up to 63% and 59%, respectively,

in region IV(c) on a seasonal basis. For the low-elevation

areas, IMERG and GSMaP errors are smaller, with the

smallest errors, on a seasonal percentage basis, in inland

region III where there is less winter precipitation than in

coastal region I. On a monthly percentage basis, IMERG

has smaller underestimation errors in December and Jan-

uary. IMERG and GSMaP underestimate precipitation

over the entire domain from 1 October 2015 to 30 April

2016 by 41% and 28%, respectively, compared to our

composite product. The underestimation is more pro-

nounced at high elevations (region IV), with percentages of

57% and 48%, respectively.

5. Discussion

Previous studies have shown that satellite-based

precipitation products such as CMORPH, PER-

SIANN, and TRMM 3B42 tend to underestimate high

precipitation rates over the contiguous United States

(e.g., Stampoulis et al. 2013; Mei et al. 2014). Un-

derestimation usually occurs in winter over moun-

tainous regions (e.g., Tian et al. 2009). AghaKouchak

et al. (2012) showed that satellite precipitation prod-

ucts had higher systematic errors in winter than sum-

mer, and the errors seemed to be proportional to rain

FIG. 6. Comparison of daily mean precipitation averaged for two periods, before and after precipitation, for (a),(b) 1 Oct 2015–8 Feb 2016;

(c),(d) 9 Feb–30 Apr 2016; and (e),(f) 1 Oct 2015–30 Apr 2016. The location of SNOTEL Buckinghorse is marked by a red dot in (e) and (f).
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rate. Winter precipitation over the OLYMPEX do-

main is primarily orographically influenced stratiform

(Zagrodnik et al. 2018). Most satellite-based pre-

cipitation estimates (including the IMERG component

algorithms) are based on a combination of passive

microwave (PMW) and infrared (IR) radiometers, and

some (including IMERG) also use the GPM dual-

frequency precipitation radar as a calibrator. IR

schemes do not perform well for stratiform

clouds (Lettenmaier et al. 2015). On the other hand,

PMW retrieval techniques rely mostly on indirect-

scattering-based schemes and tend to underestimate

precipitation generated in shallow orographic systems

due to weak ice scattering signatures (Shige et al. 2013).

PMW sensors also show an inability to measure frozen

precipitation over snow- or ice-covered areas (Nasrollahi

2015). This is a problem expected to affect all satellite

precipitation products, not just IMERG. High-

resolution numerical modeling could potentially help

to adjust satellite-based precipitation products (see,

e.g., Nikolopoulos et al. 2015). For example, Currier

et al. (2017) found that high-resolution WRF pre-

cipitation simulations were relatively unbiased

(over a set of sites) in the interior of the Olympics.

FIG. 7. Snow depth comparison between simulation and observations at 11 snow depth measurement sites using the adjusted

precipitation multiplier. Blue lines with gray shading show snow depth measurements from the time-lapse cameras along with their

uncertainty. Red solid lines showVIC snow depth at corresponding snowband without canopy. Red dashed lines showVIC snow depth in

1/328 grids. The blue dots show ASO snow depth measurements in 1/328 resolution.
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However, we preferred not to incorporate NWP or

other atmospheric model results in our estimates, so

that they are at least approximately independent of

this class of models, and could be used in model

diagnosis (in addition to satellite-based precipitation

estimates, which is our primary focus).

Our precipitation estimates are affected by errors in both

observations and (for the interior of the domain) themodel

parameters we used in our snowpack reconstructions,

though those errors should be mitigated by the adjustment

procedure discussed in section 3b(2). The estimates are also

strongly affectedby the estimates of temperature lapse rates

that are input to our model snowpack reconstructions.

Radiosonde data from Quillayute (UIL; at the northwest-

ern extremity of our domain, on the Washington coast)

provide vertical profile temperature measurements. Tem-

perature lapse rates, however, can have great spatial vari-

ability over complex terrains. For example, Minder et al.

(2010) found that temperature lapse rates exhibit sub-

stantial differences on windward and leeward sides of the

Cascade Mountains. Therefore, rather than using lapse

rates from UIL soundings, we estimated grid temperature

values by interpolating residuals from the local 20 temper-

ature stations. By taking one station out at a time, we

evaluated the accuracy of our temperature interpolation

method; the RMSE averaged across all stations was 0.958C
for the entire study period. We note that lapse rate errors

affect our reconstruction of SWE, and in turn winter pre-

cipitation, in the high-elevation interior of our domain.

They have little effect over the much larger low-elevation

portion, and generally do not affect our conclusions re-

garding underestimation by IMERG of precipitation,

which is pervasive across our entire domain.

Temperature during winter 2015/16 (from 1 November

to 31 March) was close to the climatological normal,

but winter precipitation at three SNOTEL sites with

FIG. 8. Comparison of spatial pattern by month between IMERG, GSMaP, and the reconstructed precipitation product.

FIG. 9. Division of subregions for IMERG evaluation.
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records longer than 20 years was 30% higher than nor-

mal. An elevation-based precipitation regression model

such as PRISM might represent mean spatial pre-

cipitation fields well, but has not always performed well

during anomalous years (Livneh et al. 2014; Lundquist

et al. 2010, 2015). Currier et al. (2017) suggested that

PRISM shifts estimates of total annual precipitation too

far west of the Olympic crest due to sparse gauge

FIG. 10. Comparison of storm interarrival time (h) between IMEGR, GSMaP, and the Q3GC at lower elevations and Q3MM at higher

elevations over subregions.

FIG. 11. Comparison of daily precipitation distribution between IMERG, GSMaP, and the reconstructed product over subregions.
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distribution over the mountainous interior of the

Olympics and the smoothingmethod PRISMuses on the

DEM to derive topographic facets, which our study

suggests as well (see Fig. 3a). The SNOTEL Bucking-

horse station installed in 2007 was not included in

PRISM, so when we augmented the Q3MM at higher

elevations with additional gauges, the gridded pre-

cipitation in the vicinity of this station was amplified

considerably (see Fig. 3b). The adjustment based on

ASO SWE, however, shifted precipitation toward the

Olympic crest (see Figs. 6e,f). Our incorporation of

snow data may induce some artifacts into our pre-

cipitation inversions due to wind-related drifting, snow

creep, or avalanching, although these effects are

likely minor aside from the highest elevations given

the dense forest cover over much of the domain. Other

OLYMPEX instruments might be included to further

improve our estimation. For example, the Micro Rain

FIG. 12. Monthly and seasonal comparison between IMERG, GSMaP, and the reconstructed

product over subregions.
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Radars (Houze et al. 2017) provide vertical profile

measurements, which could improve the drop size pa-

rameterizations used in the precipitation radar esti-

mates, although these improvements likely would be

mostly limited to low elevations, which are already

better represented by gauges than high elevations.

We evaluated our precipitation estimates by system-

atically removing one station at a time and found that

80% of the gauges have RMSE less than 4mmday21,

and their NRMSEs range from 0.11 to 0.83 over the

entire OLYMPEX period. All gauges have correlations

greater than 0.85 in the one-at-a-time removal estimates.

Most of the gauges at lower elevations with larger errors

are located in the eastern and northern part of the do-

main, where gauges are relatively dense and are sur-

rounded by gauges from different sources. In contrast,

OLYMPEX gauges along the orographic windward

slope to the west of the Olympic crest and SNOTEL

gauges at higher elevations showmuch greater bias than

the ones at lower elevations, with RMSEs ranging from

5.6 to 15mmday21, NRMSEs ranging from 0.45 to 0.86,

and correlations ranging from 0.86 to 0.95. The larger

error for themountain gauges can be attributed to greater

spatial heterogeneity of precipitation, sparse gauges, and

inaccuracy of climatology from PRISM incorporated into

Q3MM. The errors in the estimation of time series in the

initial precipitation fields at higher elevations can prop-

agate to our precipitation adjustment factor.

6. Conclusions

We evaluated the recently released IMERG version

04A satellite-only precipitation product and its Japanese

counterpart GSMaP version 04B over a domain that is

characterized by winter-dominant precipitation with

large orographic enhancements. Despite IMERG im-

provements relative to TRMM-based products, they

retain large biases over complex terrain and for frozen

precipitation as indicated by previous studies (e.g., Chen

and Li 2016; Tang et al. 2016; Kim et al. 2017), and these

tendencies are confirmed here.

Because of known issues in IMERG, the higher ele-

vations of the Olympics are particularly challenging.

Using a combination of radar and gauge precipitation,

and adjustments in the sparsely observed high-elevation

interior of the domain based on ASO-based SWE esti-

mates, we obtained a daily precipitation product for the

OLYMPEX domain. Our results show that both

IMERG and GSMaP capture storm interarrival time

well; their major issue is with precipitation magnitude.

IMERG substantially underestimates precipitation

throughout our evaluation period (from 1 October 2015

to 30 April 2016), with ratios of IMERG to our product

for eachmonth of 0.50, 0.51, 0.84, 0.82, 0.49, 0.29, and 0.36

averaged over our domain.GSMaPoutperforms IMERG

in most months, with ratios of GSMaP to our product for

each month of 0.81, 0.82, 0.87, 0.77, 0.50, 0.49, and 0.62.

The ratios of IMERG and GSMaP to our composite

product are 0.59 and 0.72 over the entire domain and time

period from 1 October 2015 to 30 April 2016.

The best match of IMERG and GSMaP with our

product is in the relatively inland subdomain III, where

there is less precipitation, with ratios of 0.73 and 1.00.

For the coastal subdomain I, the ratios are 0.65 and 0.74.

The underestimation is more severe at high elevations,

with seasonal ratios of IMERG to our product of 0.41,

0.53, and 0.37 for subdomains IV(a)–(c) separately, and

with ratios of GSMaP to our product of 0.52, 0.61, and

0.41 for these regions.
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