
Evaluating Simulated Microphysics during OLYMPEX Using GPM
Satellite Observations

ROBERT CONRICK AND CLIFFORD F. MASS

Department of Atmospheric Sciences, University of Washington, Seattle, Washington

(Manuscript received 5 September 2018, in final form 28 January 2019)

ABSTRACT

This study evaluates moist physics in the Weather Research and Forecasting (WRF) Model using obser-

vations collected during the Olympic Mountains Experiment (OLYMPEX) field campaign by the Global

Precipitation Measurement (GPM) satellite, including data from the GPM Microwave Imager (GMI) and

Dual-Frequency Precipitation Radar (DPR) instruments. Even though WRF using Thompson et al. micro-

physics was able to realistically simulate water vapor concentrations approaching the barrier, there was

underprediction of cloud water content and rain rates offshore and over western slopes of terrain.We showed

that underprediction of rain rate occurred when cloud water was underpredicted, establishing a connection

between cloudwater and rain-rate deficits. Evaluations of vertical hydrometeormixing ratio profiles indicated

that WRF produced too little cloud water and rainwater content, particularly below 2.5 km, with excessive

snow above this altitude. Simulated mixing ratio profiles were less influenced by coastal proximity or mid-

latitude storm sector than were GMI profiles. Evaluations of different synoptic storm sectors suggested that

postfrontal storm sectors were simulated most realistically, while warm sectors had the largest errors. DPR

observations confirm the underprediction of rain rates noted by GMI, with no dependence on whether rain

occurs over land or water. Finally, WRF underpredicted radar reflectivity below 2 km and overpredicted

above 2 km, consistent with GMI vertical mixing ratio profiles.

1. Introduction

The evaluation of mesoscale weather prediction

models over coastal mountains is of substantial impor-

tance because orographically forced coastal precipita-

tion is critical for the water resources that serve many

highly populated areas (Barros 2013). The properties of

coastal precipitation systems depend on the upstream

environment over the ocean, where collecting observa-

tions is difficult (Stoelinga et al. 2013). As a result,

satellite-derivedmeasurements are often the sole source

of observations for evaluating simulated moist physics

over coastal and offshore areas. Furthermore, continu-

ous sampling from satellite observing systems pro-

vides long-term datasets, which would otherwise be

prohibitive to obtain.

A number of studies have used satellite observations

to evaluate model moist physics, with some relying on

infrared measurements—particularly cloud-top bright-

ness temperature—to assess simulated cloud fields

(e.g., Garand and Nadon 1998; Chaboureau et al. 2002;

Keil et al. 2003; Sun and Rikus 2004; Otkin and

Greenwald 2008; Jankov et al. 2011). In one assess-

ment using simulated cloud-top brightness tempera-

tures, Jankov et al. (2011) found that several moist

physics parameterizations underestimated midlevel

clouds during atmospheric river events. Bikos et al.

(2012) used brightness temperatures to show that

simulations underestimated low-level cloud in a pre-

convective environment.

Other satellite datasets used to evaluate simu-

lated cloud properties and rainfall include those from

the Tropical Rainfall Measurement Mission (TRMM;

Kummerow et al. 1998), the Moderate Resolution

Imaging Spectroradiometer (MODIS), and CloudSat

(Stephens et al. 2002). Using MODIS observations

of a midlatitude cyclone, Otkin and Greenwald (2008)

demonstrated an overprediction of cloud depth over

the North Atlantic in the Weather Research and

Forecasting (WRF) Model. Bodas-Salcedo et al.

(2012) used a variety of satellite datasets, including

MODIS, to show that WRF produced insufficient low-

and midlevel cloud over midlatitude oceanic regions,

which was also demonstrated by Huang et al. (2014)Corresponding author: Robert Conrick, rconrick@uw.edu
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using the A-Train1 constellation of satellites. In ad-

dition, several studies using satellite measurements

found that NWP models favor low rain rates (e.g.,

Laviola et al. 2011) and underpredict heavy rainfall

events (e.g., Rakesh et al. 2009; Vasić et al. 2007;

Zhang et al. 2013; Kim et al. 2013). Relatively little

work has focused on model evaluation using satellite-

based radar reflectivity, although results from Shi

et al. (2010), using CloudSat and the Advanced Mi-

crowave Sounding Unit, indicated that WRF produces

larger values of simulated reflectivity than observed.

The extent to which simulated rainfall errors are re-

lated to errors in cloud representation remains unclear,

particularly offshore of coastal mountains.

To provide global coverage of three-dimensional cloud

and precipitation distributions from a single plat-

form, the National Aeronautics and Space Administra-

tion (NASA) Global Precipitation Measurement (GPM)

satellite mission (Hou et al. 2014; Skofronick-Jackson

et al. 2017) was launched in 2014. The GPM satellite

contains two instruments for observing clouds and pre-

cipitation: the GPM Microwave Imager (GMI) and the

Dual-Frequency Precipitation Radar (DPR), both of

which are used in this study. To provide ground validation

for the GPM satellite, the Olympic Mountains Experi-

ment (OLYMPEX) was conducted during the winter of

2015/16 over theOlympic Peninsula ofWashington State.

In addition to the GPM satellite, the OLYMPEX cam-

paign deployed aircraft, radar, and a suite of surface ob-

serving stations to sample a variety of midlatitude frontal

systems (Houze et al. 2017).

This study uses GPM observations to evaluate cloud

and precipitation fields from the WRF Model. Mea-

surements from GPM provide a unique opportunity to

elucidate possible deficiencies in simulated moist phys-

ics across a range of spatial and temporal scales. In

particular, GPM data allow for the evaluation of moist

physics upstream and over the OlympicMountains. This

paper expands on the work of Conrick and Mass (2018,

manuscript submitted to J. Hydrometeor.), which used

surface observations and WRF simulations to show that

winter precipitation is underpredicted along the Pacific

Northwest coastal zone despite realistic simulations of

incoming integrated vapor transport (IVT). Specifically,

this paper addresses the following questions:

1) How well does WRF simulate GPM-observed

water vapor, cloud water, and rain rate during

OLYMPEX?

2) Can the underprediction of precipitation over coastal

regions, described in Conrick and Mass (2018, man-

uscript submitted to J. Hydrometeor.), be explained

by upstream (offshore) GPM measurements? Can

cloud water or water vapor fields explain precipita-

tion biases?

3) How realistic are simulated vertical profiles of rain-

water, cloud water, and snowmixing ratios compared

to GPM observations? Are vertical profiles of simu-

lated reflectivity consistent with observed hydrome-

teor profiles?

4) Do varying environmental conditions, such as those

of different midlatitude storm sectors, influence

model skill? Does the accuracy of simulated rain

rate or reflectivity depend on surface type (ocean vs

land)?

This paper is organized as follows: section 2 reviews

GPM data and model configuration, section 3 describes

results of our model evaluation using GPM, and section 4

offers concluding remarks.

2. Model configuration and GPM data

a. Model configuration

During OLYMPEX, operational forecasts were pro-

duced at the University of Washington using the WRF

(Skamarock et al. 2008) Model, version 3.7.1. As in

Conrick and Mass (2018, manuscript submitted to

J. Hydrometeor.), we use archived WRF forecasts,

valid every 6 h from 0600 to 2400 UTC and initialized

daily at 0000 UTC, for the period from 1 November

2015 to 1 February 2016. A 36–12–4–1.33-km domain

configuration was utilized with 38 vertical levels, with

the innermost domain encompassing all of Washington

State and its nearshore waters (Fig. 1).

Lateral boundaries for WRF were updated and the

36-km grid was nudged every 3 h using 0.58 National

Oceanic and Atmospheric Administration (NOAA)/

National Weather Service Global Forecast System

(GFS) gridded forecasts, which also served as model

initialization conditions. Some surface parameters

were initialized from other sources.2 Model parame-

terization choices included the Noah LSM with

multiparameterization options (Noah-MP; Niu et al.

2011), the Rapid Radiative Transfer Model for GCMs

(RRTMG) radiation scheme (Iacono et al. 2008),

and the Yonsei University (YSU; Hong et al. 2006)

1 The NASA A-Train constellation of satellites consists of

OCO-2,GCOM-W1,Aqua, CALIPSO, CloudSat, andAura. More

details can be found online (https://atrain.nasa.gov/).

2 See the University of Washington online weather prediction

portal for additional information (https://atmos.washington.edu/

wrfrt/).
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boundary/surface-layer scheme. A cumulus parameter-

ization scheme (Grell–Freitas; Grell and Freitas 2014)

was used in all but the 1.33-km domain. Only forecasts

from the 1.33-km domain are considered in our analyses.

The Thompson microphysics parameterization

(Thompson et al. 2008) is used by the University of

WashingtonWRF andwas employed for theOLYMPEX

simulations. The Thompson scheme is a single-moment

microphysical parameterization scheme that predicts the

mass mixing ratios of five microphysical species: water

vapor, cloud water, cloud ice, rainwater, snow, and

graupel. For additional accuracy, rainwater and cloud ice

number concentrations are predicted, thus making the

scheme double moment for these quantities. The scheme

assumes exponential size distributions for all species ex-

cept cloud water (gamma) and snow [sum of gamma and

exponential following Field et al. (2005)].

b. GPM data

Data from two GPM instruments were obtained

from the NASA Goddard Earth Sciences Data and

Information Services Center: the GMI (Wentz et al.

2015; Iguchi and Meneghini 2016a) and the Ku-band

GPM DPR (Iguchi and Meneghini 2016b). Due to

orbital configuration, the GPM satellite is capable of

observing between 658Nand 658S.We consider data from

the OLYMPEX winter: 1 November 2015–1 February

2016, during which period there were 85 of 92 days

where at least a portion of the GMI analysis domain

in Fig. 2 was sampled.

The GPM GMI instrument collects data along a

904-km-wide swath with a 13-km horizontal resolu-

tion and 250-m vertical resolution. The operating

frequencies of GMI range from 10 to 183GHz. Within

the DPR instrument, the Ku-band radar operates at a

frequency of 13.6GHz, which is the same frequency as

the successful TRMM Precipitation Radar. The GPM

DPR Ku-band radar collects observations within a

narrower (245km) swath on a 5-km grid centered within

the larger GMI overpass swath at 250-m vertical resolu-

tion. The DPR provides measurements over land as well

as water, and thus western Washington and its nearshore

Pacific waters can be analyzed simultaneously.

As described in the GPM Science Implementation

Plan,3 the random instrument errors of the GMI and

DPR sensors were similar or better than microwave

instruments aboard TRMM. The GMI bias met GPM

mission requirements and was dependent on rain rate,

decreasing from a bias of 0.25mmh21 at rain rates of

1mmh21 to 0.1mmh21 at rates of 10mmh21, with a

sensitivity of 0.2mmh21. The DPR instrument has an

uncertainty range of 61 dB. We use the Ku-band re-

trievals from DPR because of its similarity to the suc-

cessful TRMM Precipitation Radar and because it has

been shown to be more accurate than DPR’s Ka-band

radar, which was found by Kubota et al. (2014) to un-

derestimate precipitation.

While not necessarily generalizable to the OLYMPEX

campaign due to differing topography and meteorol-

ogy, a number of GPM evaluation studies have com-

paredGPMobservations to those of TRMM. Tian et al.

(2018) demonstrated that GPM rain retrievals gener-

ally overestimated light rainfall events and under-

estimated heavy events over land. In spite of this,

studies indicate that GPM is more accurate than

TRMM when determining whether precipitation is oc-

curring (Gao et al. 2017) and light precipitation rates over

complex terrain (Ma et al. 2016). In one study over the

Swiss Alps using surface radars and rain gauges, Speirs

et al. (2017) showed that GPM retrievals generally un-

derestimate precipitation during the winter, being most

accurate when liquid-phase precipitation is occurring.

c. GPM data and WRF output processing

Figure 2 shows our GMI analysis domain, which

describes flow characteristics upstream of the Pacific

Northwest coastal zone, while still remaining within

our highest-resolution WRF domain. For each satellite

overpass, we analyze daily mean column-integrated

quantities of water vapor and cloud water content, and

FIG. 1. TheWRF-ARWdomains used duringOLYMPEX.Labels

d02, d03, and d04 indicate domains with 12-, 4-, and 1.33-km grid

spacing, respectively.

3 Appendixes A, D, and F of the GPM Science Imple-

mentation Plan (https://pmm.nasa.gov/category/document-type/

science-implementation-plans) outline error requirements and

information.
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rain rate at the surface from Remote Sensing Systems

(RSS),4 with data interpolated to a 0.258 grid. Because
GMI data are valid only over water due to microwave

retrieval constraints, land areas are removed from GMI

data along with points where adverse conditions occur,

such as sun glare (Wentz et al. 2015). In addition, we

obtain fromNASA5 daily mean vertical profiles of cloud

water, rainwater content, and snow concentrations from

the GMI instrument. For comparisons of GMI to the

model, WRF output is analyzed on the same 0.258 grid
over water. To produce a fair but comprehensive com-

parison, we remove data from both datasets where

model or observed quantities are missing or null, as well

as locations where WRF output are outside of the GMI

swath. Thus, both datasets have the same sample sizes to

facilitate statistical comparison. Daily mean vertical

profiles are computed by RSS as the mean of the as-

cending and descending satellite passes on a given day.

WRF daily means are computed as the mean of the

0600–2400 UTC forecasts.

From the DPR instrument, radar reflectivity and rain

rate data were regridded to a 0.18 horizontal grid, with
the vertical resolution retained at 250m. Due to its

smaller swath width, there were only 12 events (Table 1)

during which DPR sampled precipitation in the analysis

domain. Simulated reflectivity was computed using the

method of the Thompson et al. (2008) microphysics

scheme, assuming a 10-cm radar wavelength. Finally,

we regridded model output and DPR data to match

the DPR grid, and locations with missing or null data

are removed from both datasets, as well as where model

output is outside of a DPR swath.

3. Results

a. Evaluation of GMI-measured water species

Figure 3 shows frequency distributions during

OLYMPEX of simulated and observed water species

over the offshore GMI domain in Fig. 2. The model

realistically simulated the observed column-integrated

water vapor content, with only minor discrepancies

between model and observations (Fig. 3a). This result

is consistent with Conrick and Mass (2018, manu-

script submitted to J. Hydrometeor.), who showed that

low-level water vapor, wind speed, and IVT from ra-

winsonde data were accurately forecast during this

FIG. 2. The domains used for GPM GMI and DPR analyses, in the context of the 1.33-km

WRF domain, with selected longitudes labeled (yellow:;30 km from the coast; blue:;110 km;

and red:;190 km). The UIL rawinsonde location, the NPOL, and the Olympic Mountains are

labeled, and elevation is shaded.

TABLE 1. Events during which the GPMDPR instrument passed

over the analysis domain in Fig. 2, including an approximate

overpass time.

Overpass times and dates

2110 UTC

12 Nov 2015

1625 UTC

30 Nov 2015

1310 UTC

11 Dec 2015

1250 UTC

14 Nov 2015

0715 UTC

3 Dec 2015

0840 UTC

27 Dec 2015

2100 UTC

14 Nov 2015

1520 UTC

3 Dec 2015

2000 UTC

11 Jan 2016

2000 UTC

17 Nov 2015

0610 UTC

8 Dec 2015

1740 UTC

19 Jan 2016

4 RSS provided the GPM GMI column-integrated values (see

http://www.remss.com/missions/gmi/ for additional details regarding

data processing).
5 For additional information regarding data processing and bias

correction, see the NASA documentation (https://pps.gsfc.nasa.gov/

Documents/ATBD_GPM_V5B_April15_2018.pdf).
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period. Errors were more apparent in the distributions

of column-integrated cloud water content and rain rate

(Figs. 3b,c). Underprediction was evident in offshore

cloud water contents between 0.4 and 0.8mm, with

overprediction at values less than 0.4mm. The mean

bias of cloud water content was 20.07mm (under-

prediction). Consistent with cloud water content, WRF

rain-rate frequency exceeded observed values for light

rain rates below 1mmh21, while there was consider-

able underprediction for 1.5–6mmh21 rain rates. The

overall mean precipitation rate fromWRF and GMI was

0.38 and 1.22mmh21, respectively, with a mean bias

of20.84mmh21. Thus, satellite-based verification of the

WRF Model indicate an overall underprediction of

rainfall over the ocean during OLYMPEX, which is

consistent with the land-based evaluation by Conrick and

Mass (2018, manuscript submitted to J. Hydrometeor.),

which used rain gauges.

To further evaluate whether underpredicted rain rates

are related to cloud water deficits, Fig. 4a shows rain-rate

error as a function of cloud water error. Low cloud water

errors dominate and there is a strong positive correlation

(r5 0.733) between these data, with an overall tendency

toward negative errors (underprediction). In contrast,

errors in column-integrated water vapor are only weakly

correlated with rain rate (r 5 0.315; Fig. 4b), with water

vapor having less overall bias. These results suggest that

the underprediction of simulated rain rates is strongly

associated with too little cloud water content in WRF

compared to GMI.

To determine whether cloud water content or rain

rate was modified as the flow approached land, Fig. 5

shows frequency distributions of simulated and ob-

served (GMI) column-integrated cloud water content

(Figs. 5a,b) and rain rate (Figs. 5d,e) at various longi-

tudes. At all longitudes, the underprediction of cloud

water content and rain rate is evident when comparing

WRF to GMI, except at low cloud water contents and

rain rates (Figs. 5c,f). There was minimal upstream

orographic enhancement of cloud water content or rain

rate in either observations or simulations, with the possible

exception of the easternmost longitude (124.6258W)where

observations indicate larger values of cloud liquid wa-

ter (Figs. 5a,d). The small enhancement of cloud liquid

water offshore is consistent with the microphysical

impact of upstream flow blocking, which can intensify

liquid- and ice-phase microphysical processes (Houze

and Medina 2005).

b. Vertical humidity and hydrometeor profiles

Using rawinsonde observations during OLYMPEX,

the vertical distribution of simulated relative humidity

(RH) is evaluated to provide an independent verification

FIG. 3. Observed and simulated frequency distributions of

(a) column-integrated water vapor content (mm), (b) column-

integrated cloud water content (mm), and (c) surface rain rate

(mm h21) in the GMI domain (Fig. 2). The minimum bin for all

panels is 0.0 mm or mmh21, with bin widths for water vapor, cloud

water, and rainwater are 2.0 mm, 0.05mm, and 0.25mmh21,

respectively.
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of atmospheric saturation in the model. Rawinsondes

were launched by the National Weather Service daily at

0000 and 1200 UTC from Quillayute Airport (UIL) near

the Pacific coast on the Olympic Peninsula. Results of this

evaluation are shown in Fig. 6 as frequency distributions

of RH by height. In both simulations and observations,

profiles were generally saturated or nearly saturated be-

low 3km, with RH decreasing above (Figs. 6a,b). Differ-

ences between simulated and observed RH profiles

(Fig. 6c) were minor. Along with IVT (Conrick and

Mass 2018, manuscript submitted to J. Hydrometeor.)

and column-integrated water vapor, the similarity of sim-

ulated and observed RH profiles confirms that WRF sim-

ulations accurately represented water vapor and the degree

of saturation of the incoming flow during OLYMPEX.

Figure 7 shows observed and simulated daily mean

vertical profiles of cloud water, rainwater, and snow

mixing ratios averaged along various longitudes offshore

FIG. 4. Scatterplot of (a) column-integrated cloud water content errors (mm) vs rain-rate errors (mmh21) and

(b) column-integrated water vapor errors (mm) vs rain-rate errors (mmh21) in the GMI domain. The red line

indicates the linear regression line and dashed gray lines highlight the origin.

FIG. 5. Frequency distributions of (a)–(c) column-integrated cloudwater content and (d)–(f) surface rain rate as a

function of longitude for the (a),(d) GMI instrument and (b),(e) UW WRF simulations. (c),(f) The difference

between simulated and observed values.
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of the Washington coast. WRF underpredicted cloud

water mixing ratios at 1.25–3kmMSL for all longitudes,

with the maximum simulated cloud water content oc-

curring lower than observed: 1.7 versus 2.3 km (Fig. 7a).

Directly above the surface, cloudwater was overpredicted.

Elsewhere in the column, cloud water was realistically

simulated. WRF underpredicted rainwater mixing

ratios throughout the column (Fig. 7b), in contrast to

snow mixing ratios, which the model overpredicted at

all levels (Fig. 7c). The maximum quantities of simu-

lated snow mixing ratio occurred at a higher altitude

than observed.

Observed mixing ratio profiles varied as a function of

longitude. Approaching the coast, GMI indicated a de-

crease in cloud water, an increase in rainwater, and an

increase in snow content. This result agrees with the

influence of terrain as described in Stoelinga et al.

(2013): vertical motion forced by the barrier increases

the rate of conversion from cloud water to hydrome-

teor species. In contrast, simulated cloud and rainwater

profiles experienced little change moving toward the

coast, though simulated snow content was enhanced.

Additionally, in contrast to GMI observations, the alti-

tude of the simulated snow maximum increased ap-

proaching the coast, indicating an increase in cloud depth.

c. Environmental parameters and model skill

During OLYMPEX, a variety of midlatitude frontal

systems impacted the Olympic Peninsula (Houze et al.

2017), with synoptic and mesoscale conditions varying

substantially between storm sectors (prefrontal, warm

sector, and postfrontal). Because IVT was realistically

simulated by the University of Washington (UW) WRF

during OLYMPEX (Conrick and Mass 2018, manu-

script submitted to J. Hydrometeor.), we define storm

sectors in terms of IVT as in McMurdie et al. (2018),

using values from the North American Regional Re-

analysis (NARR; Mesinger et al. 2006) grid point near-

est to theOLYMPEXNASA S-BandDual Polarimetric

(NPOL) radar (Fig. 2). Specifically, we consider the

environment to be representative of prefrontal condi-

tions if IVT is between 250 and 450 kgm21 s21, repre-

sentative of postfrontal conditions when IVT is less

than 250 kgm21 s21, and consistent with a warm-sector

environment when IVT exceeds 450kgm21 s21. Pre-

frontal environments are typically characterized by

stable conditions and moderate but increasing melting-

level heights, with both ice and liquid microphysics

influencing surface precipitation (Zagrodnik et al. 2018).

Warm-sector environments are dominated by liquid-

phase microphysics, with large IVT and high melting

levels. In contrast, ice microphysics are dominant in

postfrontal sectors with low melting levels, unstable

conditions, and widespread snowfall over higher eleva-

tions of the Olympic Mountains (McMurdie et al. 2018).

In addition, we evaluated the other environmental pa-

rameters used in McMurdie et al. (2018)—925-hPa wind

direction and melting-level height—but since results

were similar to IVT evaluations they are not described

here. Because we considerWRF forecast hours 6–24 and

products are averaged daily, errors in timing or location

of frontal boundaries will be small.

First, we examine the frequency distributions of ob-

served and simulated rain rate, column-integrated water

vapor, and column-integrated cloud water as a function

of storm sector (Fig. 8). For all storm sectors, simulated

distributions of water vapor contents (Figs. 8a,d,g) were

not statistically different from those observed by theGMI

instrument, a result consistent with RH profiles and IVT

being realistically simulated. For cloudwater (Figs. 8b,e,h),

the postfrontal sector was most realistically simulated,

though some overprediction was present at low values

FIG. 6. RH (%) frequencies from (a) rawinsonde observations and (b) the UW WRF as a function of height at the UIL rawinsonde site

between 1 Nov 2015 and 1 Feb 2016. (c) The difference between simulated and observed RH at UIL.
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and underprediction at high values. These biases become

larger in the warmer, more moisture-rich prefrontal

and warm-sector environments. Rain-rate frequencies

(Figs. 8c,f,i) were similar, with postfrontal sectors having

the most realistic simulations, though all sectors had an

overprediction of light precipitation and underprediction

heavier amounts.

Figure 9 shows daily mean vertical profiles of cloud

water, rainwater, and snow mixing ratios averaged by

storm sector. Postfrontal sectors generally had profiles

with the smallest mixing ratios of all sectors. Consider-

ing that warm-sector environments are often associated

with strong synoptic forcing and large IVT (e.g., Zhu

and Newell 1994, Zagrodnik et al. 2018), it was not

unexpected that those environments had the greatest

mixing ratios among sectors. Compared to GMI, cloud

water profiles during pre- and postfrontal conditions

were themost realistically simulated (Figs. 9a,g), though

cloud water in the warm sectors was as much as 25%

smaller in WRF than GMI (Fig. 9d). Rainwater mixing

ratio profiles were underpredicted regardless of envi-

ronment (Figs. 9b,e,f), with large errors during warm

sectors and small errors during prefrontal environments.

Finally, simulated snow profiles during warm sectors

agreed with GMI at low levels (Fig. 9f), but remained

overpredicted elsewhere in the vertical column for all

environments (Figs. 9c,i).

d. DPR: Reflectivity and rain rates

A subset of 12 DPR overpasses over the DPR region

in Fig. 2 were chosen for analysis (Table 1). Because

DPR data validity does not depend on surface type, we

analyze reflectivity and radar-derived rain rate sepa-

rately over both land and water to consider model per-

formance with respect to our previous results and

orographic effects on precipitation.

Figure 10 displays frequency distributions of rain rates

from DPR and WRF over land and ocean. While there

is a general overprediction of low rain rates and un-

derprediction of high rain rates, it is of interest to note

FIG. 7. Daily mean observed (GMI) and simulated (WRF) vertical profiles of (a) cloud

water, (b) rainwater, and (c) snow mixing ratios at the longitudes noted in Fig. 2 (yellow:

;30 km from the coast; blue: ;110 km; red: ;190 km).
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that the distribution of rain rates over land is skewed

toward larger rates compared to distributions over wa-

ter. Domain-averaged vertical profiles of simulated and

observed radar reflectivity profiles are presented in

Fig. 11. At all altitudes, DPR reflectivity values were

larger over land than over water, whereas WRF pro-

duced generally lower reflectivity over land than over

water. Below 2km, simulated radar reflectivity was un-

derpredicted by as much as 10 dB, with overprediction

of a similar magnitude evident above 2km. From the

hydrometeor profiles shown in Fig. 7, we deduce that the

excessive simulated snow content relative to GMI is

likely responsible for the reflectivity bias above 2 km,

whereas the reflectivity deficit below 2km is the result of

too little rainwater in the model.

It is important to note that the DPR retrievals use a

wavelength near 2 cm (Ku band), whereas the WRF

calculations use a 10-cm wavelength (S band). There-

fore, we expect that the observed DPR retrievals would

be attenuated to a greater degree by heavy precipitation

or large hydrometeors (e.g., Baldini et al. 2012; Battaglia

et al. 2015). However, in a study comparing S-band

to Ku-band reflectivities, Wen et al. (2011) showed

that below 35 dB both wavelengths produce similar re-

flectivities for a variety of hydrometeor types. Above

35 dB, Ku band tends to be attenuated to a much greater

degree in ice than liquid water, the latter of which does

not see attenuation until around 45 dB. As a result, it is

possible that DPR is underestimating reflectivity in ice-

producing regions aloft, though likely not substantially,

FIG. 8. Frequency distributions as in Fig. 3, except separated by environment based on IVT: (a)–(c) postfrontal, (d)–(f) warm sector, and

(g)–(i) prefrontal. The number of events N in each environment is presented along with the p value describing whether the two distri-

butions in each panel are statistically different from each other.
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because the observed mean profiles decrease with alti-

tude and do not exceed 30dB.

4. Conclusions

The Global Precipitation Measurement (GPM) sat-

ellite provides a powerful tool for evaluating moist

physics in numerical weather prediction models, par-

ticularly over water and complex terrain where obser-

vations are difficult to acquire. In this study, we use

observations from the GPM Microwave Imager (GMI)

and Dual-Frequency Precipitation Radar (DPR) in-

struments to evaluate Weather Research and Fore-

casting (WRF) Model forecasts during the OLYMPEX

field campaign using the Thompson et al. (2008) mi-

crophysical parameterization. We evaluate a number of

aspects of model moist physics, including frequencies

of rain rate, column-integrated water vapor and cloud

water, vertical profiles of cloud water, rainwater, and

snow mixing ratios, and simulated reflectivity.

Results from our evaluation suggest that there are

deficiencies in model moist physics over the nearshore

FIG. 9. Daily mean vertical profiles from the GMI instrument (solid) and the UW WRF (dashed) at a central longitude in the GMI

domain (125.8758W; blue line in Fig. 2,;110 km from the coast). Rows indicate the environment: (a)–(c) prefrontal, (d)–(f) warm sector,

and (g)–(i) postfrontal. Columns show different mixing ratios: (left) cloud water, (center) rainwater, and (right) snow.
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waters and coastal regions of the Pacific Northwest.

Consistent with Conrick and Mass (2018, manuscript

submitted to J. Hydrometeor.) and Laviola et al. (2011),

we show that water vapor content was realistically

predicted, even though cloud water content and rain

rates experienced significant underprediction. Cloud

water errors positively correlated with rain-rate errors,

suggesting a connection between the underprediction of

these quantities.

An evaluation of simulated vertical hydrometeor mix-

ing ratio profiles indicate thatWRFunderpredicted cloud

water from 1.25 to 3km, underpredicted rainwater at all

altitudes, and overpredicted snow throughout the vertical

column where temperatures were sufficiently cold. Ap-

proaching the Pacific coast from thewest, observed cloud

water content decreased, while rain and snow contents

increased, a result consistent with the influence of up-

stream topography. WRF struggled to adequately sim-

ulate this spatial variation in hydrometeor profiles. For

example, in contrast to WRF simulations, DPR profiles

had greater reflectivity values over land than water.

Model performance was also evaluated by dividing

the analysis period into prefrontal, warm, or postfrontal

storm sectors based on integrated vapor transport

(IVT), as in McMurdie et al. (2018). Considering fre-

quency distributions and vertical hydrometeor pro-

files, postfrontal sectors exhibited the greatest degree of

agreement between simulations and observations, par-

ticularly with respect to cloud water profiles. Warm

sectors and prefrontal storm sectors had the greatest

errors compared to observations.

Further, since water vapor, cloud water concentra-

tions, and rainfall-rate errors were similar over water

and land, it appears that the boundary layer parame-

terization is not a likely contributor to the microphysical

biases we described. Thus, with the incoming atmo-

spheric water vapor content and saturation profiles ac-

curately represented in the simulations, and similar

biases noted for widely varying environmental con-

ditions and surface characteristics, it appears that

significant microphysical problems exist in the mod-

eling system.

An outstanding question is the origin of these de-

ficiencies: Are they due to deficient warm-rain pro-

cesses, ice-phase microphysics, or the processes that

connect them? Our results show the pervasive under-

prediction of rain and cloud water, coupled with the

FIG. 10. Frequency distributions of rain rates from DPR and

UW WRF as a function of surface type: (a) water and (b) land.

Profiles are averaged over the DPR domain in Fig. 2 during the

cases in Table 1.

FIG. 11. Domain-averaged vertical profiles of DPR and WRF-

simulated radar reflectivity profiles as a function of surface type:

(a) water and (b) land. Profiles are averaged over the DPR domain

in Fig. 2 during the cases in Table 1.
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overprediction of snow aloft. Poor representation of

warm-rain process could cause errors in, for example,

the generation of and conversion from cloud water to

rain in the model, which may lead to the under-

prediction of these quantities. Deficient ice micro-

physics in the model, on the other hand, may explain

the overprediction of snow aloft, preventing sufficient

seeding of low-level precipitation. Our future work will

focus on evaluating the origin of these existing biases

and how they can be corrected.
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