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ABSTRACT

Radar retrievals of drop size distribution (DSD) parameters are developed and evaluated over the

mountainous Olympic Peninsula of Washington State. The observations used to develop retrievals were

collected during the 2015/16 Olympic Mountain Experiment (OLYMPEX) and included the NASA S-band

dual-polarimetric (NPOL) radar and a collection of second-generation Particle Size and Velocity

(PARSIVEL2) disdrometers over the windward slopes of the barrier. Nonlinear and random forest regres-

sions are applied to the PARSIVEL2 data to develop retrievals for median volume diameter, liquid water

content, and rain rate. Improvement in DSD retrieval accuracy, defined by the mean error of the retrieval

relative to PARSIVEL2 observations, was achieved when using the random forest model when compared

with nonlinear regression. Evaluation of disdrometer observations and the retrievals from NPOL indicate

that the radar retrievals can accurately reproduce observed DSDs in this region, including the common

wintertime regime of small but numerous raindrops that is important there. NPOL retrievals during the

OLYMPEX period are further evaluated using two-dimensional video disdrometers (2DVD) and vertically

pointing Micro Rain Radars. Results indicate that radar retrievals using random forests may be skillful in

capturing DSD characteristics in the lowest portions of the atmosphere.

1. Introduction

Precipitating weather events can be observed in three

dimensions thanks to the continuous spatial and tem-

poral coverage of meteorological ground-based radars,

making radar observations a valuable tool for weather

analysis and research. Radar products have long been

used for microphysical retrievals, such as rain rate and

drop size distribution (DSD) characteristics. Perhaps

the first such retrieval was described in Marshall and

Palmer (1948), who used reflectivity Z to estimate rain

rate R at the surface using a power-law relation, known

as a Z–R relationship. A number of such Z–R retrievals

have since been developed for a variety of meteoro-

logical situations and locations, and they continue to

be used by the U.S. National Weather Service to pro-

duce operational quantitative precipitation estimates

(Kuligowski 1997; Fulton 2002; Apffel et al. 2015).

With the introduction of dual-polarization radars

for research and operational applications (Kumjian

2013), microphysical retrievals of increased complexity

have been developed from collocated radar and surface

observations, with substantial progress made during field

experiments such as the NASA Global Precipitation

Measurement (GPM) Mission Ground Validation (GV)

campaigns. These campaigns include the deployment of

sophisticated networks of remote and in situ observing

platforms, coupled with data from the NASA GPM sat-

ellite (Hou et al. 2014). GPM GV projects such as the

Midlatitude Continental Convective Clouds Experiment

(MC3E; Jensen et al. 2016) and the Iowa Flood Studies

(IFloodS; Krajewski et al. 2013) have provided valuable

surface-based observations of precipitation and facili-

tated radar retrievals of microphysical properties (e.g.,

Pippitt et al. 2015). In addition to NASA GPM GV, a

number of other studies have developed radar retrievals

for DSDs using similar suites of observations (e.g.,

Brandes et al. 2006; Cao et al. 2008; Zhang et al. 2006).

However, these experiments predominantly sampled

convective environments in regions of relatively ho-

mogenous terrain and are not necessarily applicable to

regions dominated by stratiform precipitation or regions

with substantial topography.

Several studies have examined DSDs during strati-

form or convective precipitation, delineating these re-

gimes based on the DSD median volume diameter andCorresponding author: Robert Conrick, rconrick@uw.edu
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the intercept parameter of the distribution (e.g., Tokay

and Short 1996; Atlas et al. 1999; Bringi et al. 2003, 2009;

Uijenhoet et al. 2003; Siefert 2005; Sharma et al. 2009).

Although Thompson et al. (2015) found considerable

overlap of DSD characteristics between convective and

stratiformenvironments, convection appeared tohave larger

liquid water content for a given drop size. Furthermore,

Dolan et al. (2018) used principal component analysis to

demonstrate that global DSD characteristics varied as a

function of latitude, which, they suggested, meant that the

physical processes impactingDSDs also varied by latitude.

The results of the above studies and others suggest that

DSD radar retrieval algorithms developed for convective

storms may not be applicable to locations where strati-

form precipitation is dominant or where topography is a

key controller of regional precipitation distributions, such

as the Pacific Northwest (Chow et al. 2013). Zagrodnik

et al. (2018), using DSD observations from the Olympic

Mountains Experiment (OLYMPEX;Houze et al. 2017),

showed that DSDs varied considerably during differ-

ent storm sectors of midlatitude cyclones impacting the

Olympic Peninsula of Washington State. In addition, they

found that periods warm-rain enhancement were associ-

ated with DSDs having a large number of small drops.

The development of machine learning techniques

and their implementations (e.g., the ‘‘scikit-learn’’ Python

package; Pedregosa et al. 2011) provide newopportunities

for the atmospheric sciences, particularly with regard to

statistical weather forecasting (Herman and Schumacher

2018). To the best of our knowledge, however, there have

been no applications of machine learning to DSD ra-

dar retrieval development, particularly in the Pacific

Northwest. As such, this paper will apply a common ma-

chine learning algorithm [random forest (RF) regression;

Breiman 2001] to disdrometer data to produce radar re-

trievals ofDSDcharacteristics. One goal of this paper is to

determine whether the random forest technique can be a

feasible method to retrieve DSDs.

The central aim of this study is to produce and evaluate

radar retrievals of median volume diameter, liquid water

content, and rain rate over the Olympic Peninsula using

OLYMPEX observations, specifically the NASA S-band

dual-polarimetric (NPOL) radar and OLYMPEX dis-

drometers. This study develops and evaluates retrievals

based on both traditional nonlinear regression and

random forest regression techniques. Retrievals are

then used to produce DSD information above the sur-

face, where these observations are generally unavailable.

Such radar-based retrievals could help evaluate micro-

physical biases in regional numerical weather prediction

models, such as the documented underprediction of liq-

uid water content and precipitation over windward slopes

of the Pacific Northwest (Conrick and Mass 2019a,b). In

this paper, section 2 describes the data and method used

to retrieve microphysical information from radar data

using second-generation Particle Size and Velocity

(PARSIVEL2) disdrometer observations, and section

3 provides an evaluation of the retrievals using two-

dimensional video disdrometers (2DVD) and verti-

cally pointing radars. Section 4 includes discussion of

results and concluding remarks.

2. Data acquisition and processing

a. NPOL radar data

During OLYMPEX, the NPOL (Wolff et al. 2017)

radar provided coverage over the Quinault Valley on the

windward side of the Olympic Peninsula of Washington

State (Fig. 1). The NPOL radar operated at a frequency

of 2.77GHz (108-mm wavelength). This study uses radar

Z and differential reflectivity ZDR over the Quinault

Valley collected along the 49.98 azimuth range–height

indicator (RHI) scans with elevation angles ranging from

08 to 458. Radar data were collected between 1November

2015 and 1 February 2016. The NPOL range gate spacing

duringOLYMPEXwas 125m, andwe remove data at the

lowest elevation angle (08). The temporal resolution of

FIG. 1. Map of surface observing stations used in this study, in-

cluding the NPOL radar, the PARSIVEL2 units (blue circles),

PARSIVEL2 1 2DVD units (red squares), and MRR locations

(stars). The black dashed line represents the 49.98NPOLRHI scan

that is used to develop retrievals. Distances from the NPOL radar

to each station are also noted next to the station name.
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the NPOL radar was approximately 20min for the

49.98 RHI azimuth.

NPOL data underwent extensive quality control and

data filtering following the conclusion of OLYMPEX

(Wolff et al. 2017). The quality control process included

the Global Precipitation Mission Ground Validation

(GPM-GV) dual-polarimetric quality control (DPQC)

algorithm (Pippitt et al. 2013). The DPQC algorithm is

designed to filter raw radar data to remove erroneous

data obtained by a radar system (e.g., ground clutter,

biological targets, and anomalous propagation) by con-

straining measurements according to a number of nu-

meric thresholds. Pippitt et al. (2013) describes the full

process and physical basis for the algorithm.

Because the DPQC does not correct for signal atten-

uation, we apply the ‘‘ZPHI’’ attenuation correction

method (Bringi et al. 1990; Gu et al. 2011; Ryzhkov et al.

2014) to the NPOL data. Despite S-band radars exhibit-

ing less attenuation than do radars with smaller wave-

lengths (Bringi et al. 2012; Baldini et al. 2012), the

presence of heavy rain near orography motivates the

need to correct attenuation, as demonstrated by Ryzhkov

et al. (2014), who showed that this technique is advanta-

geous in regions of complex terrain For this study, we use

the ZPHI algorithm in the Python ARM Radar Toolkit

(Py-ART) software—see Helmus and Collis (2016) for

further details.

b. PARSIVEL2 disdrometer and 2DVD

Along with the NPOL radar, several PARSIVEL2

disdrometers (Petersen et al. 2017a) were positioned

along a southwest-to-northeast line extending from the

Pacific Coast to the Quinault Valley and adjacent wind-

ward slopes (Fig. 1). At each disdrometer site, liquid

water content (LWC; gm23), median volume diameter

D0 (mm), rain rate (RR; mmh21), and the normalized

DSD intercept parameter NW (mm21m23; Illingworth

and Blackman 2002) were calculated every minute from

PARSIVEL2 data using the PyDisdrometer software

package (Hardin and Guy 2017), which uses Eq. (6) from

Tokay et al. (2014) to compute DSDs.

At three PARSIVEL2 locations (Fishery, Amanda

Park, and Bishop Field) there were collocated 2DVDs

(Petersen et al. 2017b). DSD information was computed

in the same manner as the PARSIVEL2 disdrometers

and subject to the same quality control described below.

The 2DVDs serve as an independent evaluation of this

study’s DSD retrievals.

c. Data alignment and quality control

Initial quality control and data filtering of the

PARSIVEL2 and 2DVD datasets was completed as

per NASA’s data management protocol, which removes

spurious drops from the disdrometer dataset. The pro-

tocol follows Tokay et al. (2001), in which drops are re-

moved from the dataset if their fall velocity is 650% of

the empirical value from Beard (1976) for an identical

sized drop. This ensures that erroneous data, which often

appear as drops with unphysical fall speeds, are removed.

To facilitate the evaluation of radar retrieval prod-

ucts, NPOL data must be spatially and temporally

aligned with ground assets (PARSIVEL2 and 2DVD).

Spatial alignment was performed by finding the hori-

zontal location of each surface station in the 49.98 RHI,

then obtaining themean value of NPOLdata (Z orZDR)

within a 6 5 horizontal and 61 vertical range located

around each surface site. These steps reduced inclusion

of erroneous radar data (e.g., ground clutter) into the

retrieval evaluations. For the Seed Orchard, Fishery,

Amanda Park, Bishop Field, Bunch Field, and Graves

Creek sites, the lowest NPOL gate used in evaluations

corresponds to an approximate height of 133, 236, 314,

425, 1010, 1375m above ground level (AGL), respec-

tively, in order of distance from NPOL.

Next, data were matched in time. Surface station data

werematched to NPOL observation times to the nearest

minute, producing 2520 potential samples of data per

station for subsequent evaluation. Next, data from all

three surface-based platforms [PARSIVEL2, 2DVD, and

Micro Rain Radar (MRR)] were removed when any of

the following conditions were met: 1) data were missing,

null, or showed an error code; 2) Z . 50dBZ; 3)

ZDR,25dB orZDR. 5dB; 4) PARSIVEL2RRwas less

than 0.254mmh21 (this value corresponds to 0.01 in. h21,

which is one tip of a standard tipping-bucket rain gauge);

or 5) PARSIVEL2 LWC was less than 0.01 gm23. NPOL

data were removed from consideration if RR was

less than 0.01mmh21. The quality control steps above

ensured that only precipitating times were considered.

d. Micro Rain Radar data

Evaluating radar retrievals above the surface presents a

significant challenge due to a lack of microphysical ob-

servations. During OLYMPEX, two MRRs (Petersen

and Gatlin 2017) from METEK were deployed at the

Fishery and Bishop Field sites along the transect in Fig. 1.

The MRR is a single-polarized, vertically pointing,

24-GHz (K band) radar that sampled 30 range gates from

0 to 3km above ground at 100-m intervals. The MRR

retrieves reflectivity and particle fall speed spectra, which

are then converted into bulk radar reflectivity and DSDs

with the Atlas et al. (1973) fall speed–drop size relation.

Peters et al. (2005) provides a detailed description of

the default MRR data processing and computations.

From the MRRs, we computed 1-min values of Z,

D0, LWC, NW, and RR with the same method used to
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process the disdrometer data. MRR reflectivity data

were computed by integrating the measured drop

size distribution, rather than using a reflectivity factor

computed from radar properties and particle cross-

sectional areas.

Because the MRR operates at a wavelength that is

approximately one tenth of the NPOL radar wavelength,

attenuation due to liquid water is potentially significant

and increases with height (METEK 2009; Peters et al.

2005), leading to reduced accuracy above the surface. To

address attenuation concerns,MRRobservations are bias

corrected using the method described in the METEK

Physical Basics document (METEK 2009). In short,

their method of attenuation correction uses the path-

integrated attenuation (PIA) calculated at each range

gate to adjust the reflectivity spectrum retrieved at that

particular range gate. The correction is only applied when

PIA is less than 10dB. In this study, we only consider

attenuation-corrected MRR observations. Additionally,

because stratiform precipitation tends to dominate win-

tertime conditions in the region of interest, we did not

implement vertical velocity corrections to the MRR data

as in Adirosi et al. (2016).

3. Retrieval methods

a. DSD radar scattering properties from
PARSIVEL2

A goal of developing radar retrieval equations is to

obtain information about the characteristics of DSDs

(D0, LWC, RR, and NW) over a wide area above the

surface by using only ground-based observations. During

OLYMPEX, PARSIVEL2 disdrometers provided the

greatest spatial and temporal coverage compared to

2DVD or MRR assets. As such, the T-matrix scat-

tering method (Mishchenko et al. 1996) is applied to

PARSIVEL2 DSDs to estimate Z and ZDR. These scat-

tering calculationswere performedusing theNPOL radar

frequency (2.77GHz) and the Thurai and Bringi (2005)

drop shape model within the framework of the PyDSD

(Hardin and Guy 2017) software package.

Using Z and ZDR estimated from T-matrix calcula-

tions, rather than directly from NPOL observations, is

advantageous for producing accurate radar retrievals.

Retrieval development using Z and ZDR from NPOL

produces significantly less accurate retrievals than

the T-matrix method, likely because NPOL observa-

tions contain attenuation or ground clutter errors.

Furthermore, the difference in height between the

radar’s lowest sample volumes and the surface in-

creases with distance from the radar, which introduces

additional uncertainty in the resulting retrieval. Thus,

the T-matrix computation provides a more reliable

conversion between radar scattering characteristics

and DSD properties.

Figure 2 demonstrates the agreement between ob-

served (NPOL) and disdrometer-derived radar param-

eters aggregated across all surface observing stations

deployed during OLYMPEX. For these surface mea-

surements, agreement is qualitatively good among all

data sources, with no significant discrepancies between

platforms. Comparing NPOL observations with the other

platforms, Z from NPOL is slightly smaller (;3dB) than

the disdrometers (Fig. 2a), even though attenuation cor-

rection is applied to NPOL. Similarly, ZDR is modestly

larger from NPOL than the other observations (Fig. 2b),

but mostly at large ZDR. We suspect that these differ-

ences may be a result of the NPOL beam height being

FIG. 2. Frequency distributions of (a) reflectivity Z, (b) differential reflectivity ZDR, and (c) specific differential phaseKDP as observed

by the NPOL radar and from T-matrix calculations applied to disdrometer (PARSIVEL2 and 2DVD) and MRR observations. Colored

lines represent the various datasets evaluated in this study. NPOL reflectivity and differential reflectivity data are bias corrected using the

ZPHI method. No MRR data are shown in (b) or (c) because the MRR is a single-polarized instrument.
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well above the surface at the corresponding stations.

Quantitatively, it is noteworthy that no dataset differs

from one another in a statistically significant manner

based on a Kolmogorov–Smirnov test of distribution

similarity. Also, despite the relationship between specific

differential phaseKDP and rain intensity demonstrated by

Chandrasekar et al. (2008), KDP is not used to develop

retrievals because of the significant discrepancies be-

tween NPOL and PARSIVEL2 KDP values (Fig. 2c).

b. Nonlinear and random forest regression techniques

Prior to developing retrievals from random forests, it

is important to produce a set of retrievals from nonlinear

regression (NL), which is presently the most widely ac-

cepted method for generating radar retrievals. The re-

trievals shown in Table 1 were derived using least squares

NL regression between PARSIVEL2 observations and

radar scattering properties from the T-matrix calcula-

tions. This method has been employed successfully by a

number of other studies for a variety of environments and

precipitation regimes (e.g., Zhang et al. 2001; Bringi et al.

2003; Brandes et al. 2004a,b; Cao et al. 2008; Gorgucci

et al. 2008; Thurai et al. 2010; Pippitt et al. 2015).

FollowingCarlin et al. (2016), our retrievals take the form

of the product of power-law functions involving radar

properties (Z and ZDR) as independent variables.

Next, a second set of NPOL radar retrievals was de-

veloped using RF regression. RFs are an ensemble of

decision trees that produce a single output value derived

from a set of input data. Each tree is a network of con-

nected decision nodes that terminate in leaf nodes.

Beginning with an input value at the root (top) of a

decision tree, the input traverses the tree toward sub-

sequent nodes along a left or right branch based on a

numerical assessment at each decision node. When the

input value reaches a leaf node (the bottom of the tree),

then the decision tree has been fully traversed and the

output value associated with the leaf is returned as the

tree’s prediction or forecast. For RF regression, tree

uniqueness is ensured by building a select number of

trees of identical depth using randomly selected sub-

samples of the training dataset. To avoid overfitting the

data, tree growth is halted when a leaf node has a par-

ticular number of values (samples), and the average

prediction at that leaf is obtained. To produce a single

prediction and to further avoid overfitted data, all trees

are averaged together.

A number of parameters can be tuned in anRFmodel.

In this study, the optimal selection of parameters was

determined through an iterative method in which the

following parameters were methodically varied and the

best combination of estimators was chosen: the number

of trees, the depth of trees, and the minimum number of

samples at a leaf. An exhaustive and detailed explana-

tion of RFs, RF regression, and the parameters needed

to grow an RF can be found in Breiman (2001). Table 2

documents the optimal parameters chosen in this study’s

RF regression. Furthermore, because an RF model can-

not be represented by a single equation (as can NL

models), this study’s RF model is available online in

the form of files containing a Python implementation

(https://github.com/rconrick/NPOL-RF-Retrievals) for

reproduction of results. The RF regressions devel-

oped for DSD retrievals, like the NLs above, use Z and

ZDR calculated from PARSIVEL2 data as input to

predict values of D0, LWC, and RR.

For consistency, both theNL andRF retrieval methods

were developed using the same set of training data. The

training data consisted of 50% of the available data,

which were randomly selected without replacement.

Testing data were the remaining 50%.

c. Computation of NW

In addition to D0 and LWC, the normalized intercept

parameter is another useful quantity describing the dis-

tribution of hydrometeors. Observed DSDs have been

shown to fit a gamma distribution (i.e., Ulbrich 1983;

Zhang et al. 2008), although many numerical weather

prediction models use exponential distributions to de-

scribe hydrometeor species because of their computa-

tional simplicity (Zhang et al. 2008). As a result, NW

TABLE 1. Nonlinear regression radar retrieval equations derived

in this study for D0 and LWC. Coefficients of the equations are

presented with the corresponding bounds on the values.

Retrieval equation Coef

D0 5 aZb
HZ

c
DR a 5 0.546 6 0.005

b 5 0.254 6 0.003

c 5 0.189 6 0.001

LWC5 aZb
HZ

c
DR a 5 1.48 3 1026 6 5.01 3 1028

b 5 3.479 6 9.37 3 1023

c 5 20.137 6 8.72 3 1024

RR5 aZb
HZ

c
DR a 5 1.377 3 1026 6 4.39 3 1028

b 5 4.296 6 8.75 3 1023

c 5 20.172 6 7.92 3 1024

TABLE 2. Parameters used to generate random forests to predict

D0 and LWC given Z and ZDR as predictors.

D0 LWC RR

No. of trees 50 800 800

Depth of trees 150 50 50

Max data per tree (NTraining)
1/2 (NTraining)

1/2 (NTraining)
1/2

Min data required to

create new branch

4 5 5

Min data per leaf 1 2 2
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allows for the direct comparison between observed

(gamma) distributions and simulated (exponential)

distributions, and it is related to a distribution’s rain-

drop number concentration. From Thurai et al. (2014),

NW is computed by the following relation:

N
W
5

3:674 3 103 3LWC

pr
w
D4

0

,

where rw is the density of water (1 g cm23). To obtain

NW in this study, LWC and D0 were first obtained from

FIG. 3. Scatterplots of PARSIVEL2 observed and retrieved (a),(b) D0 (mm), (c),(d)

LWC (g m23), and (e),(f) RR (mm h21) from (left) training and (right) testing datasets;

each of the training and testing dataset represents a unique 50% of the data selected

without replacement. The black line is the 1:1 line. Red squares represent quantities re-

trieved with nonlinear regression, and the blue circles show quantities obtained by random

forest regression.
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nonlinear or random forest retrievals and then used as

inputs into the above equation. It is important to note

that the PARSIVEL2 disdrometers also compute NW

this way, but with observed quantities of LWC and

D0. Thus by following this approach, NW values are

methodologically consistent with surface observing

techniques.

4. Evaluation of retrievals

a. Comparison of nonlinear and RF regression

Prior to evaluating retrievals using other observations,

retrieval bias was assessed by comparing the NLs

and RF method to the PARSIVEL2 observations.

Figure 3 shows scatterplots ofD0, LWC, and RR from

the training and testing datasets using both retrieval

methods. Only PARSIVEL2 data were used in Fig. 3

for the purposes of viewing the behavior of the

retrievals.

Applying RF retrievals to the testing data shows

more retrieved variance for all fields when com-

pared to the training data (Fig. 3), which is expected

when considering that the RF is encountering the

testing data for the first time. For small observed

D0, NL tends to produce erroneously smaller drop

sizes than observed, while the RF method does not

share this bias (Figs. 3a,b). The RF approach was

also better able to capture larger drops, specifically

above 2 mm, which appears to be the upper limit for

the NL equations. LWC retrievals from the RF

method were superior to NLs for all values of LWC,

with substantially less spread in the RF retrieval

than NLs (Figs. 3c,d). For LWC retrieved from NL,

there was overestimation in the training data when

values are less than ;0.5 g m23 and underestimation

above that value. The RR scatterplots in Figs. 3e

and 3f demonstrate shapes similar to the LWC plots,

but with less variance for both types of retrievals,

which is expected considering that RR is a func-

tion of LWC.

In all cases, improvement in correlations and a

decrease in the differences between observed and

retrieved data were found when using RF compared

to NL regression. Because we used 1-min DSDs for

these comparisons and thus had very large sample

sizes, the correlations and slopes were nearly the

FIG. 4. Error statistics for (a)D0, (b) LWC,

and (c) RR resulting from applying nonlinear

regression (gray bars) and random forest re-

gression (orange bars) to the PARSIVEL2

training and testing data. RMSE and MAE

both follow conventional definitions.
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same between training and testing data, but improved

nonetheless:

1) D0 correlations improved from 0.85 (NL) to 0.93

(random forest) and slopes improved from 0.76

to 0.86,

2) LWC correlations improved from 0.74 to 0.97 and

slopes improved from 0.53 to 0.94, and

3) RR correlations improved from 0.87 to 0.98 and

slopes increased from 0.75 to 0.96.

To further highlight the advantages of the RF retrieval

method, Fig. 4 shows root-mean-square errors (RMSE)

and mean absolute errors (MAE) for the data pre-

sented in Fig. 3. For NL retrievals, training and testing

data errors are comparable, which is the result of these

retrievals applying a fixed functional form to the data.

Using RF retrievals, however, had a dramatic impact

on error statistics, with many error quantities being

reduced by well over 50%. One notable outlier is the

RF retrieval applied toD0 testing data, which improved

less than for the other fields. This can also be noted from

comparing Figs. 4a and 4b, which demonstrate broader

distributions of D0 retrievals from training to testing

datasets.

b. Independent data evaluation at the surface

To evaluate RF DSD retrievals, observations of DSD

parameters were considered from the 2DVDs and the

MRRs that were collocated with PARSIVEL2 units

(Fig. 1). The following evaluations are presented using

surface data that are collocated in time and space as

described previously. MRR data shown are from the

second gate above the surface, at 125m AGL.

Frequency distributions of D0, LWC, NW, and RR

from PARSIVEL2, MRR, and 2DVD observations at

the surface are shown in Fig. 5 along with the same

quantities retrieved from NPOL random forest and

NL techniques. Data in Fig. 5 are aggregated by in-

strument type. Figure 5a shows that D0 observations

from PARSIVEL2 and 2DVD were similar, although

FIG. 5. Frequency distributions of (a) D0, (b) LWC, (c) RR, and (d) NW from surface ob-

servations from the PARSIVEL2, MRR, and 2DVD networks, NPOL nonlinear regression

retrievals (NPOL NL), and NPOL random forest retrievals (NPOL RF). Data are aggregated

across all stations for a given network type. See Fig. 1 for the stations that compose each

dataset.
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PARSIVEL2 observations had a peak frequency at

0.75mm whereas 2DVD observations peaked slightly

larger. In comparing RF with NL retrievals, it is seen

that RF captured the smaller peak drop size whereas

NL tended toward larger peak sizes. Otherwise, dis-

tributions of RF and NL retrieved D0 was similar.

For D0 observations, the MRR was shifted toward

very small values of D0, and thus was an outlier.

Across observations and retrievals, LWC and RR dis-

tributions (Figs. 5b,c, respectively) were all approximately

exponential and qualitatively similar in terms of magni-

tudes. Subtle differences, though, exist between the

RF and NL retrieval accuracy. Specifically, RF re-

trievals tend to favor lower values of LWC and RR,

whereas the NL retrievals favor larger values, although

neither could be qualitatively considered outliers given

the spread of observations. Both methods overpredict

very low LWC and RR when compared to PARSIVEL2

observations, which is a result of using PARSIVEL2

rain rates to filter other datasets. Finally, Fig. 5d

shows NW calculated from D0 and LWC as described

previously. Because NW is a function of D24
0 , the er-

rors in Fig. 5a are magnified. Interestingly, the RF

retrieval produces NW values that are closer to the

2DVD observations than the PARSIVEL2. The RF

retrieval also produces a number of very small NW

values that are not well captured by the other plat-

forms, although they may also be a result of no rain

noted by the radar despite the PARSIVEL2 recording

precipitation. As in Fig. 5a, NW data from the MRRs

are outliers at the surface, where the distribution in

Fig. 5c is much broader than the other platforms and

favors very large NW. Figure 6 presents distributions

of absolute error between PARSIVEL2 observations

and the RF or NL retrievals. None of the error distri-

butions for a particular retrieved quantity are statisti-

cally different as per a Kolmogorov–Smirnov similarity

test. This can be inferred visually from the consider-

able overlap in the errors between retrieval tech-

niques. Despite these results, RF retrievals do offer

considerable advantages. In particular, as shown in

Fig. 3, because RF retrievals are not confined to fixed

functional form, they have more flexibility to retrieve a

broader range of values. It is suspected that the

minimal differences between RF and NL errors in

Fig. 6 are chiefly the result of NPOL beam height

FIG. 6. Boxplots (25, 50, and 75 percentiles, from bottom to top) showing the absolute errors

of NPOL random forest (RF) and nonlinear regression (NL) retrievals in comparison with

PARSIVEL2 disdrometer data aggregated at all PARSIVEL2 sites in Fig. 1.
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above the surface stations, which introduces error

into the retrievals.

c. Qualitative comparisons with MRR data

As a final evaluation, NPOL retrievals are compared to

MRR profiles from the surface to 2.5km AGL. For this

study, the MRRs located at the Fishery and Bishop Field

sites were used. It is important to note that because of

data quality concerns (J. Zagrodnik 2019, personal com-

munication) the MRRs have not been used extensively

in OLYMPEX literature. Nonetheless, it is important

to compare them qualitatively to the NPOL retrievals.

Figure 7 shows vertical profiles of the interquartile range

and median reflectivity from the MRRs and NPOL ra-

dar. At the Fishery site, agreement between platforms is

considered good, with only minor deviations between

radar profiles (Fig. 7a). At Bishop Field, however, the

discrepancies between NPOL and MRR data are more

substantial and thus Bishop Field data were excluded

from profile analyses in Fig. 8. Data for the vertical

profiles in Figs. 7 and 8 are binned every 200m altitude.

Vertical profiles of D0, LWC, RR, and NW are pre-

sented in Fig. 8 from NPOL RF retrievals and MRR at

the Fishery site. For all fields, accuracy decreases sig-

nificantly above 1 km AGL, with the best agreement

noted below 0.5 kmAGL. Furthermore, some overlap is

noted in data interquartile ranges from 1 to 1.5 km. As in

the surface analyses presented above, the NPOLRF and

NL retrievals perform similarly, with a notable exception

being the D0 retrievals, for which NPOL RF produces

smaller and more reasonable D0. The smaller drops from

RF D0 are more physically reasonable given that warm

rain processes are favored in the environment of the

Olympic Peninsula (Zagrodnik et al. 2018). Because re-

flectivity from the MRR is calculated using the measured

DSD, it is possible that the similar reflectivity profiles at

Fishery in Fig. 7a are the result of MRR DSD errors in-

creasing as a function of height. For instance, the strong

decrease in MRR D0 as a function of height is contrary to

other studies using MRR instruments, which found a less

pronounced decrease or nearly constant profile (Chen et al.

2016; Marzuki et al. 2016), with the smaller drop sizes seen

by the MRR at the surface in Fig. 6a lending credibility to

possible MRR errors. Although there are potential MRR

data problems aloft, they are included in this study to

highlight the need for better observations of DSDs below

the melting level. Nonetheless, agreement between NPOL

retrievals and theMRRdata near the surface in Fig. 8 does

indicate that NPOL retrievals are skillful near the surface.

5. Discussion and concluding remarks

In this study, nonlinear and random forest regressions

are used to develop dual-polarization radar retrievals

FIG. 7. Vertical profiles of radar reflectivity at the (a) Fishery site and (b) Bishop Field from

the NPOL radar (black) and MRRs (blue). Shaded regions indicate the interquartile range,

and the dashed lines show themedian value; 1-minMRRdata are used at the observation times

of the NPOL radar along the 49.98 RHI scan.
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using NPOL radar observations from the OLYMPEX

field experiment of 2015/16. Radar retrievals were de-

veloped for the median volume diameter D0, liquid

water content, and rain rate using observations from six

PARSIVEL2 disdrometers, with the normalized drop

size distribution intercept parameter NW computed as a

function of LWC and D0. After development, initial

evaluations showed that the random forest retrievals in

this study were more accurate and unbiased than non-

linear regression retrievals when applied to and evaluated

against the PARSIVEL2 disdrometer dataset, with some

improvements in RMSE exceeding 50%. Correlations

and slopes describing the relationship between observed

and retrieved values increased for all quantities when RF

methods were used, with the most substantial increase

being LWC having a slope increase from 0.53 to 0.94.

Two independent datasets, 2DVDs and MRR verti-

cally pointing radars were used to evaluate retrievals

at the surface using 1-min data from the OLYMPEX

winter matched to NPOL observation times. Results

demonstrated a high degree of correspondence between

PARSIVEL2, 2DVD, and MRR observations, except

for MRR D0 and NW. Differences between RF and NL

retrievals were also shown to be modest based on anal-

ysis of mean errors relative to PARSIVEL2 data, al-

though the utility of RF retrievals is evident for more

extreme values. Above the surface, where very little

microphysical information is available, the MRRs were

used to qualitatively assess NPOL retrievals at the

Fishery site. Below 500m AGL, there was good agree-

ment betweenNPOL andMRRdata, with lesser but still

reasonable agreement for 0.5–1 km AGL. The RF D0

retrievals were more accurate than the NL retrieval at

low levels.

Although the results of RF retrievals are not signifi-

cantly better than NL retrievals when applied to the

entire OLYMPEX winter, RF retrievals were shown to

offer some key advantages. Figure 3 demonstrated the

disadvantage of using a fixed functional form to retrieve

DSDs, as in an NL retrieval. Using an NL approach

introduces a greater number of erroneous data points,

as is evident, for instance, by the ;2-mm cutoff for

FIG. 8. Vertical profiles of (a)D0, (b) LWC, (c) RR, and (d)NW at the Fishery site from the

NPOL RF retrievals (black), NPOL NL retrievals (red), and MRRs (blue). Shaded regions

indicate the interquartile range, and the dashed lines show the median value; 1-min MRR

data are used at the observation times of the NPOL radar along the 49.98 RHI scan.
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NLD0 retrievals in Figs. 3a and 3b that is not seen in the

RF retrievals. Thus, while overall error statistics from

RF retrievals may not be appreciably different than NL

retrievals, themethod employed to produceRF retrievals

is more conducive to obtaining DSDs that are physically

accurate and less prone to spurious large errors.

Furthermore, despite developing retrievals over a

particular region, it is likely that this approach is more

widely applicable, as liquid precipitation regimes con-

sisting of numerous small drops have been noted in

cloud systems around the world (e.g., Thompson et al.

2015; Dolan et al. 2018). Furthermore, the application

of random forest regression to radar retrieval provides a

novel retrieval method that is at least as accurate as

traditional nonlinear regression to obtain DSD charac-

teristics from dual-polarimetric data, with the potential

to better capture D0.

The development and evaluation of above-surface

retrievals is important for advancing understanding

of precipitation characteristics, particularly when com-

bined with other observing methods. Because previ-

ous evaluations of precipitation simulations in over the

windward side of the Olympic Mountains have found

precipitation underprediction, future research will em-

ploy this new approach to better understand numerical

weather prediction model biases in the context of sim-

ulated and observed DSDs.
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