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ABSTRACT

This article illustrates how multifrequency radar observations can refine the mass–size parameterization of

frozen hydrometeors in scattering models and improve the correlation between the radar observations and

in situ measurements of microphysical properties of ice and snow. The data presented in this article were

collected during the GPM Cold Season Precipitation Experiment (GCPEx) (2012) and Olympic Mountain

Experiment (OLYMPEx) (2015) field campaigns, where the true mass–size relationship was not measured.

Starting from size and shape distributions of ice particles measured in situ, scattering models are used to

simulate an ensemble of reflectivity factors for various assumed mass–size parameterizations (MSP) of the

power-law type. This ensemble is then collocated to airborne and ground-based radar observations, and the

MSPs are refined by retaining only those that reproduce the radar observations to a prescribed level of

accuracy. A versatile ‘‘retrieval dashboard’’ is built to jointly analyze the optimal MSPs and associated re-

trievals. The analysis shows that the optimality of an MSP depends on the physical assumptions made in the

scattering simulators. This work confirms also the existence of a relationship between parameters of the

optimal MSPs. Through the MSP optimization, the retrievals of ice water contentM and mean diameterDm

seem robust to the change inmeteorological regime (betweenGCPEx andOLYMPEx); whereas the retrieval

of the diameter spread Sm seems more campaign dependent.

1. Introduction

Numerical weather models must account for the

spatial distribution of snow and ice in the atmo-

sphere, given their importance in the hydrological

and energy cycles of Earth (Stephens et al. 2012).

Spaceborne profiling radars are well suited for mea-

suring the spatial distribution of frozen precipitation

globally. The current fleet of spaceborne radars con-

sists of the W-band cloud profiling radar of CloudSat

(Stephens et al. 2008), the Dual-Frequency (Ku, Ka)

Precipitation Radar (DPR) of the Global Precipitation

Measurement (GPM) Core Observatory (Hou et al.

2014) and the Ka-band radar in a CubeSat (RainCube)

of the Jet Propulsion Laboratory (JPL) (Peral et al. 2019).

Radar measurements result from the contributions of all

the particles of water (in their liquid, solid. or mixed-

phase form) contained in the resolution volume (RV;

with typical dimensions of a few kilometers horizontally

and ;250m vertically). The content of the RV is

characterized statistically through the particle size

distribution (PSD), which describes the number of

particles of a given maximum dimension D per unit

volume, and the mass–size parameterization (MSP),

which defines the mass of particles of size D. Radar

reflectivities can be regarded as statistical moments

of the PSD weighted by the backscattering cross

sections of particles. The radar cross section of a hy-

drometeor is frequency dependent and strongly corre-

lated to the particle’s mass, shape, and phase. In this

paper we focus on conditions where the hydrometeors

are prevalent in their solid state, and as ‘‘low-density’’

habits (i.e., not mixed phases from the melting layer of

precipitation, hail, nor high-density graupel).Corresponding author: Ousmane O. Sy, ousmane.o.sy@jpl.nasa.gov
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With frozen particles, characterizing the MSP or PSD

via radar reflectivity measurements is challenging for

multiple reasons. The morphological diversity of frozen

particles induces a large variability of their masses and

electromagnetic properties. Mathematically, it is diffi-

cult to disentangle the effect of the PSD from that of the

MSP on the radar reflectivity. Moreover, characterizing

MSP and PSD by a few scalars (radar observations) is

impossible unless one parameterizes the spectra (e.g.,

gamma models for the PSD, power laws for theMSP) or

focuses on mass-weighted bulk moments of the PSD.

Here, we examine specifically the potential of a

multifrequency radar approach that spans the fre-

quencies traditionally employed in spaceborne cloud

and precipitation radars. Efforts to quantify the un-

certainties associated with radar retrievals of ice mi-

crophysics are affected by a number of challenges:

the scarcity of viable datasets, their delicate quality

control and collocation, interpretation of measure-

ment errors, and the interplay between particle mass

and shape, which affect the scattering properties at

various wavelengths. ‘‘Ideal’’ retrieval conditions are

usually met only in fully controlled numerical ex-

periments, or in field campaigns where remote sens-

ing and in situ sampling instruments are operated

jointly. Even in such contexts, errors are introduced

by the mathematical approximations made to construct

retrieval operators.

The aim of this article is to use dual-frequency radar

observations (Ku, Ka) to refine the mass–size parame-

terization of frozen hydrometeors in scattering models

and, thereby, improve the correlation between radar

observables and retrievals of microphysical properties of

snow. To this end, we use data from two field campaigns,

namely, the GPM Cold Season Precipitation Experiment

(GCPEx; Ontario, Canada, 2012) (Skofronick-Jackson

et al. 2015), and the Olympic Mountain Experiment

(OLYMPEx; state of Washington, 2015) (Houze et al.

2017). In both campaigns, remote sensing instruments

and in situ probes were deployed jointly. Of particular

interest to this study are 1) the instruments on the

Citation aircraft (CIT) of the University of North Dakota,

which measured in situ thermodynamics and particle im-

ages from which PSDs were derived, and 2) the radar

measurements acquired by JPL’s Airborne Precipitation

Radar (APR) (Sadowy et al. 2003; Durden et al. 2020) and

the ground-based dual-frequency dual-polarized Doppler

radar (D3R) (Vega et al. 2014).

The in situ data provide a reference for the ‘‘true’’

state of the atmosphere and the PSD. However, none of

the instruments measured the mass–size spectrum of

particles, thus leaving the MSP uncertain. To quantify

this uncertainty, we start from the measured PSDs and

assume various MSPs to simulate unattenuated radar

reflectivities at all bands of interest. Next, collocated

radar observations are used to constrain the scattering

simulations. The objective of this ‘‘Z constrained’’

optimization is twofold: 1) to evaluate how well the

MSP-perturbed simulations approximate the collocated

observations, and 2) to study the sensitivity of the bulk

moments associated with the optimal MSPs, which we

consider as our retrievals (ice water content M, mean

mass-weighted diameter Dm, and spread Sm).

A number of case studies using data from specific

events in GCPEx and OLYMPEx have been completed

(Heymsfield et al. 2018; Huang et al. 2019; Leinonen

et al. 2018; Chase et al. 2018; Durden et al. 2020). In this

paper, we use all the in situ, APR and D3R data from

GCPEx and OLYMPEx. Fontaine et al. (2014), Wood

et al. (2015), Falconi et al. (2018), and Finlon et al.

(2019) have conducted analyses similar to ours using

data from Cirrus Regional Study of Tropical Anvils

and Cirrus Layers–Florida-Area Cirrus Experiment

(CRYSTAL-FACE), Canadian CloudSat/CALIPSO

ValidationProgramme (C3VP),BiogenicAerosolsEffects

on Clouds and Climate (BAECC), and Midlatitude

Continental Convective Clouds Experiment (MC3E),

respectively. The meteorological regimes sampled dur-

ing GCPEx and OLYMPEx were quite different from

those sampled during CRYSTAL-FACE, C3VP, BAECC

andMC3E.A ‘‘retrieval dashboard’’ will be used to jointly

analyze the optimal MSPs and associated retrievals in a

radar and thermodynamic context.

The outline of this article is as follows. Section 2 gives

an overview of the instruments deployed during GCPEx

and OLYMPEx and describes the strategy to collocate

the various datasets. In section 3, the scattering calculations

are outlined by assuming a fixed mass–size relationship.

Then, we present the bank of parameterizations for evalu-

ation. Section 4 describes the MSP optimization, discusses

our choice of references for retrieved moments, and, pres-

ents the retrieval dashboard used to analyze the optimal

MSPs. Section 5 compares retrievals fromGCPEx to those

fromOLYMPEx. Last, in section 6 we study the sensitivity

of the retrievals of M, Dm, and Sm to the quantization of

the space of MSPs and the scattering models.

2. Overview of datasets and collocation strategy

a. Datasets

GCPEx took place inOntario, Canada, between January

and March 2012, and was led by NASA and Environment

Canada (EC). As shown in Table 1, the meteorological

events sampled consisted mostly of light precipitation in

the form of snowfall (Skofronick-Jackson et al. 2015).
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OLYMPEx, led by NASA with significant contribu-

tions from EC, took place in Washington State, be-

tween November 2015 and February 2016. OLYMPEx

sampled a variety of heavy precipitation ranging from

stratiform to convective systems (see Table 1) (Houze

et al. 2017).

GCPEx and OLYMPEx were ground-validation ex-

periments to improve the snowfall retrieval algorithms

of GPM. In both experiments, the CIT measured the

state of the atmosphere using sensors for temperature,

King and Nevzorov probes for the water content, and

High Volume Precipitation Spectrometer, version 3

(HVPS3), and two-dimensional stereo (2DS) particle

imaging probes. The particle images were processed to

derive PSD and aspect ratio spectra, forD 2 [0.8, 30] mm

(D 2 [0.1, 1.28] mm) for HVPS3 (2DS) (Skofronick-

Jackson et al. 2015). The 2DS and HVPS3 observations

were combined at 1mm to produce a PSD for D 2
[0.1, 30] mm. The significant quality control of the

image processing included corrections for shattered

particles, removal of coincident particles in the same

frame, and rejection of particles due to poor focus or

instrument malfunction (Heymsfield and Parrish 1978;

Field et al. 2006; McFarquhar et al. 2017).

Radar observations were acquired by APR flown on

NASA’s DC8 aircraft, and by the ground-based D3R.

During GCPEx, APR was in its ‘‘second generation’’

(APR2) version and recorded Ku- and Ka-band data.

OLYMPExmarked the first deployment ofAPR3 (third

generation), with observations at Ku, Ka, and W bands

(Durden et al. 2020). This article will focus on Ku- and

Ka-band reflectivities, since these channels are common

to GCPEx and OLYMPEx and to APR and D3R, re-

spectively. Some results of W-band measurements (only

available from APR in OLYMPEx) will be shown but

only for illustration purposes. APR is a cross-track

scanning (6258) radar with a 30-m range sampling

(Sadowy et al. 2003). D3R (Ku- and Ka-band radar),

with a range sampling of 150m and maximum range of

30 km, was operated from the Centre for Atmospheric

Research Experiments (CARE) site (in Barrie, Ontario)

during GCPEx, and from the NPOL site (near Taholah,

Washington) during OLYMPEx. Owing to the spatial

resolution and sensitivity of APR (detection thresholds

of ;(0, 220, 230) dBZ, at 10-km distance for Ku, Ka,

and W bands), it can detect fine atmospheric features

that can be challenging to detect by D3R (thresholds at

;(215, 5) dBZ at 10-km range for Ku and Ka bands in

GCPEx, and ;(210, 5) dBZ in OLYMPEx), especially

when D3R is pointed at a high elevation angle.

APR and D3R records have been calibrated inde-

pendently. For APR, the absolute calibration of the

Ku band was done using surface returns from clear-air

profiles over water bodies (Great Lakes in GCPEx,

Pacific Ocean in OLYMPEx); Ka and W bands were

calibrated relative toKu band by ensuring the consistency

between 1) surface returns over water and 2) echoes from

cloud tops where all channels should be in Rayleigh

scattering regime (Durden et al. 2020). For D3R, the

reflectivity was calibrated ‘‘absolutely’’ using a metal

TABLE 1. Meteorological events during GCPEx and OLYMPEx and number of radar observations with collocated CIT (at all temper-

atures) for collocation margins (dr 5 0.5 km, dh 5 50m, dt 5 5min).

GCPEx OLYMPEx

Date Meteorological event

Number of

records

Date Meteorological event

Number of

records

APR D3R APR D3R

19 Jan 2012 Light snowfall 8408 8890 12 Nov 2015 Pre-/cold-frontal rain 9811 7539

27 Jan 2012 Cold/freezing rain 29 230 15 230 13 Nov 2015 Pre-/cold-frontal rain 6789 2484

28 Jan 2012 Light snowfall/lake effect 19 973 12 283 14 Nov 2015 Pre-/cold-frontal rain — 5059

30 Jan 2012 Moderate snowfall 528 4811 18 Nov 2015 Shallow postfrontal convection 908 856

31 Jan 2012 Moderate snowfall 8182 — 23 Nov 2015 Collapsing frontal system 1514 —

12 Feb 2012 Lake effect 6678 1333 24 Nov 2015 Collapsing frontal system 509 —

13 Feb 2012 8116 — 1 Dec 2015 Stratiform/orographics 4528 1577

14 Feb 2012 Light snowfall — 7278 2 Dec 2015 Stratiform/orographics 3248 —

18 Feb 2012 Heavy snow — 26 755 3 Dec 2015 Baroclinic system/orographics 4446 1731

24 Feb 2012 Light snowfall/lake effect 17 877 3545 4 Dec 2015 Postfrontal convection 2838 1882

5 Dec 2015 Large frontal system 6480 10 964

10 Dec 2015 Postfrontal convection 2079 —

12 Dec 2015 Occluded front 5129 13 251

13 Dec 2015 Postfrontal convection 2433 430

18 Dec 2015 Weak/mixed frontal — 4619

19 Dec 2015 Weak postfrontal convection 988 105

Total number of collocated records 98 985 80 118 Total number of collocated records 51 687 50 486
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sphere and a tower-mounted corner reflector. For the

relative calibration, the reflectivity estimates were ver-

ified for consistency using light-rain measurements close

to the radar (Vega et al. 2014). Both for APR and D3R,

calibration absolute errors are within 1 dB.

Given the observing geometries of APR (top-down)

and D3R (bottom-up), attenuation affects the observed

precipitation in different ways. We correct for gaseous

attenuation using a standard millimeter-wave propaga-

tion model (Liebe 1985). The required profiles of tem-

perature, pressure and relative humidity are obtained

from MERRA (Rienecker et al. 2011). We do not at-

tempt to correct for attenuation by condensed water to

avoid introducing errors that could bias our analyses.

Instead, we screen the profiles where the attenuation

due to liquid or mixed-phase particles is severe and use

only profiles where the path attenuations at Ku and

Ka bands are negligible (see details in section 4a and

appendix A).

b. Collocation strategy

We adopt a radar-centric approach to collocate in situ

measurements with radar observations. This allows us to

identify all in situ samples that are relevant to each radar

observation, and establishes an invariant mapping of the

in situ data on the radar data, so that there is no need to

recollocate in situ data after each reprocessing of the

radar data. To clarify the description, let PRAD(tRAD)5
[rRAD(tRAD), hRAD(tRAD)] be the spatial coordinates

of a valid radar record (APR or D3R) at time tRAD,

with rRAD(tRAD) 2 R
2 the vector of local horizontal

coordinates and hRAD(tRAD) the altitude. Similarly,

let PCIT(tCIT) 5 [rCIT(tCIT), hCIT(tCIT)] be the coordi-

nates of the CIT aircraft at time tCIT. We adopt collo-

cation margins (dr 5 0.5 km, dh 5 50m, dt 5 5min)

derived by an analysis of the spatiotemporal decorrelation

of the radar signal. For every PRAD(tRAD), we find all the

PCIT such that jrCIT 2 rRADj # dr, jhCIT 2 hRADj # dh
and jtCIT 2 tRADj # dt: these constitute the ‘‘close’’ CIT

points. The data at the close points are uniformly averaged,

which mitigates the impact of extreme values.

While the chosen collocation margins are tight, to

warrant the simultaneity of the measurements from the

various instruments, we still obtain large datasets, as

shown by Table 1: more than 90 000 (50 000) airborne

records and more than 80 000 (50 000) ground-based

records for GCPEx (OLYMPEx). In what follows, we

will replace the ‘‘RAD’’ subscript with ‘‘A’’ and ‘‘D’’ to

specify APR and D3R data, respectively. Even though

all the quantities (reflectivity factor, PSD) used in our

article are normalized by the sampled volume, the volume

sampled by the CIT is necessarily different (and smaller)

than the RV of the radar. This could cause issues in terms

of spatiotemporal representativeness. One way to miti-

gate this issue is to integrate in time the CIT measure-

ments to increase the volume sampled by the in situ

probes and obtain measurements that are more repre-

sentative of the content of the RV. Here, the CIT data,

initially sampled every second, are integrated over 5 s

(which represents a sampled length between 600 and

1000m for typical aircraft speeds).

Figure 1 shows the radar profiles of all cases of triple

collocation APR–CIT–D3R in OLYMPEx. To find these

profiles, we first consider the coordinates of the CIT–APR

and CIT–D3R collocated samples, and require that the

distance between CIT locations be within the (dr, dt, dh)

margin. The resulting 435 profiles displayed in Fig. 1

illustrate the capabilities of the radars. The W-band

reflectivity of APR [top row, shown only for illustration

purposes as the article focuses on (Ku, Ka)-band data]

is highly sensitive to particles in the top of clouds, but

heavily attenuated toward the surface (the surface echo

disappears). On 2 December 2015 (the dates are indi-

cated as labels in top row of Fig. 1 and separated by

dashed red lines),ZA,W was unavailable. TheKa band of

APR, ZA,Ka (row 2), has a sensitivity similar to that of

ZA,W, as can be seen in the cloud tops, and it is less at-

tenuated. Owing to the tight collocation margins, there

is a good agreement between ZA,Ka and ZD,Ku the D3R

observations at Ku band (row 3). The main differences

appear in the profiles of the dual-wavelength ratios

(DWR) ZD,Ku2Ka (row 4) and ZA,Ku2Ka (row 5): for

D3R, since ZD,Ka has less sensitivity than ZD,Ku, there

are places with missing DWR in the top parts of

ZD,Ku2Ka; conversely, for APR, ZA,Ku has less sensitiv-

ity than ZA,Ka and there are empty spots in the top parts

of ZA,Ku2Ka (above 6 km in the stratiform event of

12 November 2015). The ground-based DWR ZD,Ku2Ka

(row 4) shows how liquid scatterers increase the atten-

uation significantly. For instance, on 12 November 2015,

for the first 90 profiles, ZD,Ka is strongly attenuated

above the melting layer (clearly visible with a bright

band around 2km of altitude), whereas for the next

profiles, the attenuation of ZD,Ka increases drastically

from the surface upward, most likely due to liquid or

mixed-phase precipitation. The presence of liquid pre-

cipitation can be inferred from the temperature (row 6)

measured by CIT (position indicated by black dots in the

top five panels). The DWR of APR (row 5) is less af-

fected by attenuation since, above the melting layer,

the attenuation is mostly caused by low-density frozen

hydrometeors. Instead, higher values of ZA,Ku2Ka, in-

dicative of larger scatterers, show the growth of particles

in the melting layer, for example, on 12 November and

2 December 2015. The bottom row displays the PSD

obtained from 2DS and HVPS3 [denoted N(D) with
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D the maximum particle size] and shows the abundance

of smaller frozen particles (D , 1mm and T , 278C),
for example, on 13 November 2015. Even though this

triple-collocation example shows that D3R’s Ka-band

measurements are severely affected by attenuation, there

are many more cases of D3R–CIT collocations where the

attenuation is not as severe (more than 55000 and 19000 in

GCPEx and OLYMPEx, respectively; see Fig. 4).

3. Scattering calculations

Particle images, measured in situ by the 2DS and

HVPS3 probes, are processed to derive the distributions

of particle sizes N(D) and aspect ratios RASP(D), for D

ranging between Dmin 5 0.1mm and Dmax 5 30mm

(Heymsfield et al. 2002b). In this article, theDmeasured

by 2DS and HVPS3 (two-dimensional imaging probes)

is the maximum dimension.

Given an image from either HVPS or 2DS, for every

particle with maximum dimension D, the aspect ratio

RASP(D) is defined as RASP(D) 5 W(D)/D, with W(D)

the maximum dimension in the direction orthogonal to

D (Korolev and Isaac 2003). Since every image generally

contains multiple particles, the processing yields a set of

values [D,RASP(D)] {and similarly for [D,N(D)]}, which

are integrated over 5 s to obtain an individual spectrum.

Our objective is to use these measured spectra in a

scattering model and compute unattenuated reflectivity

factors that will be compared to collocated radar

observations. These simulations (described in section 3a)

FIG. 1. Triple collocations APR–CIT–D3R during OLYMPEx. Radar profiles measured (first, second, and fifth rows) by APR3 and

(third and fourth rows) by D3R: W-band (ZA,W) and Ka-band (ZA,Ka) reflectivity from APR in the top two rows, Ku-band reflectivity

(ZD,Ku) from D3R in the third row; DWR (ZKu–Ka) from D3R in the fourth row and APR in the fifth row. In situ measurements in the

bottom two rows: air temperature in the sixth row and particle size distribution N(D) derived from 2DS and HVPS3 vs the maximum

particle sizeD in the bottom row. The altitude of CIT is shown as black dots in rows 1 to 5, and the dates (month-day format) are labeled in

the top row and separated by dashed red lines in all rows.
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depend crucially on the mass of the particles, which,

however, was not measured. We will tackle this issue by

making assumptions about the mass–size dependency

of the particles (section 3b).

a. Modeling approach assuming a fixed mass–size
parameterization

We assume that the MSP has a given form denoted

m(D). The corresponding reflectivity factorsZF (mm6m23)

at wavelength l is computed as (Doviak and Zrnić 1993)

Z
F
5

l4

p5jK
w
j2
ðDmax

Dmin

s
B
(l,D)N(D) dD, (1)

where jKwj ’ 0.93 is the reference dielectric factor

of water chosen constant to ensure that the DWR

ZKu2Ka 5 ZKu 2 Za tends to 0 in the Rayleigh limit of

small particles, and N(D) is the PSD measured in situ.

The backscattering cross-section sB, which depends on

the assumed MSP, is computed using a T-matrix code

(Waterman 1971), where particles are represented as

equivalent spheroids of maximum size D, with an oblate-

ness ratio equal to themeasured RASP(D). We assume that

particles fall with their largest dimension nearly horizontal.

However, such may not be the case in reality, for example,

in the presence of turbulence or a strong electric field

(Weinheimer and Few 1987). In such cases, large dif-

ferences between D (measured by 2D-imaging probes)

and the true maximum size of the three-dimensional

particle can bias the volume of the circumscribing

spheroid, the assumed density, and simulated scattering

properties of the particles. Studies have shown that in

such cases, it may be better to use the mean particle

diameter (Hogan et al. 2012) or the disk-equivalent di-

ameter, or to adjust the measured D (von Lerber et al.

2017). These promising approaches are not used in the

framework of this article because the measured regimes

in GCPEx and OLYMPEx have small turbulence (with-

out strong convection or thunderstorms), which limits

possible discrepancies between the measured D and the

truemaximum size of the particle. The effective refractive

indices of the particles are computed via a Bruggeman

approximation (Bruggeman 1935), and depend on the

MSP, which sets the fraction of ice versus air in the par-

ticle approximation.

To characterize the microphysical properties of par-

ticles, bulk moments are used, namely the ice water

content (IWC) M (gm23), the mean mass-weighted di-

ameter Dm (m), and the normalized diameter spread

Sm (unitless), with

M5

ðDmax

Dmin

m(D)N(D) dD , (2)

D
m
5E

m
(D) and S

m
5

1

D
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
m
[(D2D

m
)2]

q
, (3)

where the expectation operator Em(�) is defined as

E
m
(y)5

1

M

ðDmax

Dmin

y(D)m(D)N(D) dD,

for any function y(D). (4)

In this article, even though the continuous notation is

used for integrals [e.g., Eqs. (2) and (4)], in practice,

they are evaluated as discrete sums via a trapezoidal

quadrature rule.

b. Uncertainties due to the MSP

To quantify the effect of the uncertain mass of the

particles, the simulations are perturbed by consider-

ing 56 different MSPs, which are power laws denoted

{Pk}k51,...,56 (Pruppacher and Klett 1996). More ex-

plicitly, if the parameterization index is written as

k 5 8(j 2 1) 1 i,

m
k
(D)5 a

i
Dbj , for i5 1, . . . , 8 and j5 1, . . . , 7 ,

(5)

with a1 5 0.005, a2 5 0.0010, a3 5 0.0019, a4 5 0.0037,

a5 5 0.0071, a6 5 0.0139, a7 5 0.0269, a8 5 0.0524 in cgs

units (i.e., ai is in g cm2bj), and b1 5 1.01, b2 5 1.34, b3 5
1.67, b4 5 2, b5 5 2.34, b6 5 2.67 and b7 5 3. One

can convert the prefactors to MKS units as follows

ai,(MKS) 5 ai,(cgs)10
2bj23, where the corresponding m, D,

and ai,(MKS) would be expressed in kilograms, meters,

and kgm2bj , respectively. All these m(D) relationships

have merits of their own as they were generally derived

from field or laboratory experiments. In particular, P56

(with a 5 0.0524 and b 5 3) corresponds to assuming a

constant density of 0.1 g cm23, which is common inGPM

algorithms (Liao et al. 2005; Grecu et al. 2011). Based on

observational evidence, the exponent b should range

between ;1.7 and 3 (Pruppacher and Klett 1996;

Haddad et al. 2017). However, in this article, a wider

range of values is considered, with b as low as 1.01, to

test whether such coefficients still produce accurate

scattering computations. This approach is similar to the

one of Fontaine et al. (2014), who assumed b as low as

1.04. Thus, for every in situ measurement, the T-matrix

simulations produce 56 realizations of reflectivities at

Ku and Ka band, and moments (M, Dm, Sm). Table 2

shows the effect of the MSP uncertainty on the sim-

ulations. Given a parameterization Pk, a CIT record

time t, and a variable Xk (reflectivity or moment in

decibels), the spread of Xk at time t due to the MSP

perturbation is
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s
X
(t)5max[X

k
(t)]2min[X

k
(t)] . (6)

Table 2 confirms that the MSP perturbation affects

mostly the IWC and the reflectivities. Since the MSP

perturbation modifies neither the shape nor size of the

scatterers, the DWR,Dm and Sm are marginally affected

by the MSP perturbation. The robustness of Dm and Sm
comes also from their definition as mass-normalized

averages [see Eq. (4)].

4. Optimal MSPs constrained by collocated
radar observations

Collocated radar observations are now used to eval-

uate the skills of the various simulations.

a. Screening radar profiles for liquid attenuation

First, the radar profiles are screened to eliminate

those severely attenuated by liquid particles. The at-

tenuation by frozen particles is not addressed because

1) GCPEx and OLYMPEx are devoid of high-density hy-

drometeors (such as hail or graupel) and the attenuation

at Ku and Ka bands by low-density snow/ice is not as

strong as the liquid attenuation, and 2) the attenuation

by frozen particles depends on the yet unknown masses

of the scatterers. As explained in appendix A, the cor-

rection uses collocated profiles of temperature from

MERRA (‘‘MERRA300. prod.assim.inst3_3d_asm_Cp’’

product), and k–Z relationships derived from GCPEx

and OLYMPEx PSDs. The resulting liquid path-

integrated attenuation (PIAliq) between the radar

and CIT allows us to eliminate all the collocated

sampleswhere PIAliq. PIAmax5 0.5dB. The liquidwater

content (LWC) measured by the King probe (designed to

measure LWC2 [0.02, 5.0] gm23) is also used to eliminate

all CIT records where LWC . 53 1022 gm23.

b. MSP optimization

For any MSP Pk, the absolute error DKu,Ka between

the reflectivities (Zk,Ku, Zk,Ka) simulated by T matrix,

and, collocated reflectivity measurements (Zobs,Ku,

Zobs,Ka) is

D
Ku,Ka

5max jZ
obs,Ku

2Z
k,Ku

j, jZ
obs,Ka

2Z
k,Ka

j
� �

. (7)

The ‘‘optimal MSPs’’ (OMSP) are those for which

DKu,Ka # Dmax 5 1.5 dB. The threshold Dmax con-

strains the forward simulations, while accounting for

calibration errors of APR and D3R. Such a strict

threshold should also eliminate samples contami-

nated by reflections from the ground (APR data) or

the CIT aircraft.

c. Retrieved bulk moments (M, Dm, Sm) and
references

The retrieved quantities are the bulk moments

(M, Dm, Sm) of the OMSPs. One difficulty is to find

references for these moments, that is, in situ measure-

ments, which do not depend on the MSP assumptions.

Ideally, one would want to use the true values of these

moments. However, as shown byEqs. (2)–(4), it requires

knowledge of the true m(D) relationship, which is un-

known. Instead of true values, reference values are used

to estimate the expectedmagnitude of the bulkmoments.

For the IWC, the reference is the total water content

MNev at negative temperatures, as measured by the

Nevzorov probe (designed forMNev 2 [0.02, 1.5] gm23).

Although the Nevzorov probe can occasionally under-

estimate the true total water content (see, e.g., Korolev

et al. 2013), it is the only available independent mea-

surement of IWC. The reference for the mean particle

diameter is chosen as the median-volume diameter D0,

which is the solution of (Brandes et al. 2004)

ðD0

Dmin

y(D)N(D) dD5

ðDmax

D0

y(D)N(D) dD , (8)

where the volume is defined as

y(D)5
p

6
D3R

ASP
(D) . (9)

The definition of D0, is of course different than the

definition of Dm [see Eq. (3)]. However, as detailed in

appendix B, D0 is a better (high correlation and low bias)

TABLE 2. Effect of theMSP perturbation on the simulated radar reflectivities and bulkmoments. Themetric sX is the range of variation

of variableX, as defined in Eq. (6) and expressed in dB (statistics of sX smaller than 0.5 dB are rounded off to 0 dB). The slight differences

between GCPEx and OLYMPEx results are due to the differences between the measured PSDs.

X 5 forward product X 5 bulk moment

ZKu (dBZ) ZKa (dBZ) ZKu2Ka (dB) M (dB gm23) Dm (dB mm) Sm (dB)

GCPEx min(sX) 43 42 0 23 0 0

max(sX) 58 58 15 37 12 7

OLYMPEx min(sX) 43 45 0 24 0 0

min(sX) 57 58 26 39 18 11
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reference than the PSD-weighted or volume-weightedmean

diameters. For the normalized spread Sm, the reference is

S0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EV[(D2D0)

2]

q
/D0, the volume-weighted spread

about D0, where EV(�) is defined as

E
V
(y)5

1

V

ðDmax

Dmin

y(D)y(D)N(D) dD,

for any function y(D), (10)

V5

ðDmax

Dmin

y(D)N(D) dD . (11)

d. Microphysical dashboard: Illustration using triple
collocations APR–CIT–D3R

We now introduce the retrieval dashboard used to

analyze the OMSPs: it is a figure (see, e.g., Fig. 2)

consisting of four panels (labeled by yellow boxes) that

allow us to jointly study the parameters of the OMSPs

(Fig. 2a), the collocated radar reflectivities (Figs. 2b,d),

the bulk moments (Figs. 2b,c), and to compare various

retrievals. The dashboard is illustrated in Fig. 2 forOMSPs

obtained using triple-collocation data fromGCPEx, that is,

(Ku, Ka) data from APR and D3R in cases where APR,

CIT, and D3R measurements are collocated.

1) FIGURE 2A: STATISTICS OF THE

OMSP PARAMETERS

Figure 2a shows statistics of the OMSP parameters.

As indicated on the left of the graph, the MSP pertur-

bation allows to accurately simulate collocated Ku and

Ka observations for 4911 APR samples and 1901 D3R

samples (i.e., for each of these collocated observations,

at least one of the assumed MSPs produces Ku and Ka

FIG. 2. Retrieval dashboard from triple collocations in GCPEx (APR vs D3R). (a) Distribution of optimal MSPs as a function of (a, b)

(marker size represents the occurrence frequency, and solid line is fit bfit 5 K1adB 1 K2 for OMSP ‘‘diagonal’’). (b) Mean values,

conditional to (ZKu,ZKu2Ka)measured by (top),(middle)APRand (bottom)D3R, of bulkmoments [references (MNev,D0, S0) in top row,

retrievals (M,Dm, Sm) in bottom two rows]: IWCM orMNev (marker color), mean diameterDm orD0 (marker size), and spread Sm or S0
(marker type). (c) Scatterplots comparing bulk moments [(left)M, (center)Dm, and (right) Sm] retrieved from APR (horizontal axis) to

those from D3R and references (vertical axis, marker size represents the occurrence frequency). (d) Profiles where retrievals from APR

and D3R agree within 20% of relative error: vertical profiles of quantiles of (left) ZKu and (center) ZKa, and (right) number of samples.
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reflectivities such thatDKu,Ka# 1.5 dB).All theMSPs for

which DKu,Ka # 1.5 dB (a single collocated radar obser-

vation may have multiple MSP simulations that are ac-

curate) are used to compute the frequency of occurrence

of each OMSP, which is plotted as a function of the pa-

rameters (a, b) of the power law (marker size proportional

to the frequency of occurrence). None of theMSPs clearly

dominates the others, since the highest score is lower than

10%. On the other hand, if all parameterizations were

equally likely to be optimal, each would have a score of

1/56 ; 2%. Instead, there are preferred MSPs, which are

clustered along a line (hereinafter named the OMSP

‘‘diagonal,’’ for ease of reference) shown as a solid line

and defined by b ; 0.114adB 1 5.008 for APR (b ;
0.110adB1 4.896 forD3R), where adB5 10 log10(a). There

is a close resemblance between the APR- and D3R-based

OMSPs, as expected from the triple collocation (APR and

D3R observe the same volume) and the fact that the light

precipitation in GCPEx limited the impact of attenuation

on the radar observations.

2) FIGURE 2B: OMSP BULK MOMENTS

(M, Dm, Sm) VERSUS RADAR OBSERVATIONS

Figure 2b shows the conditional mean of the bulk

moments as a function of the collocated radar observa-

tions (ZKu, ZKu2Ka). The top row shows the distribution

of the references (MNev, D0, S0) as a function of collo-

cated (ZKu, ZKu2Ka) from APR. The second and third

rows show the retrieved (M, Dm, Sm) as a function of

collocated (ZKu, ZKu2Ka) from APR and D3R, respec-

tively. The IWC (MNev or M in logarithmic scale) and the

mean diameter (D0 or Dm) set the color and the size of

the markers, respectively. Different markers indicate

small (downward triangle)-, moderate (circle)-, and large

(upward triangle)-diameter spreads (S0 or Sm). The various

plots of Fig. 2b show that 1) the M retrieved for ZKu #

5dBZ are slightly lower than MNev, most likely due to the

limited sensitivity of the Nevzorov probe, 2) larger particles

correspond to larger ZKu2Ka, and 3) almost all retrieved

spreadsSm correspond to low ormoderate spreads (Sm#

0.8, and similarly for S0).

3) FIGURE 2C: INTERCOMPARISON OF RETRIEVED

BULK MOMENTS (M, Dm, Sm)

Figure 2c compares the APR-based retrievals (horizon-

tal axis) to the D3R-based retrievals and to the reference

moments (both on vertical axis, in red and black, respec-

tively). To build these plots, the values of (M,Dm, Sm) are

binned as a function of the observed (ZKu, ZKu2Ka) and

the local temperature T. Then, for every bin of the condi-

tioning (ZKu, ZKu2Ka, T) hypercube, the mean of the

retrieved (M,Dm, Sm) and (MNev,D0, S0) are computed.

Using the same conditioning hypercube allows us to

compare the various retrievals in scatterplots such as

those of Fig. 2c (M in the left column, Dm in the middle

column, and Sm in the right column). The sizes of the

markers are proportional to the frequency of occur-

rence. The legend provides the correlation coefficient

C (in %) and the relative bias B between the vari-

ables [given two positive variables X and Y, the bias

between XdB 5 10 log10(X) and YdB 5 10 log10(Y) is

B0 5E(YdB 2XdB), and the relative bias is defined as

B5 100(100:1B0 2 1), in %]. There is a good agreement

between APR- and D3R-based retrievals of all mo-

ments (clustering of points about the diagonal dashed

line and small biases). The retrieved moments are also

in agreement with their reference values. Hence, for

this triple-collocation case, the retrievals are rela-

tively insensitive to the platform (airborne or ground

based) from which the radar measurements are ac-

quired. This result is also the sign of a suitable mutual

calibration between APR and D3R.

4) FIGURE 2D: RADAR PROFILES OF CONSISTENT

APR/D3R RETRIEVALS OF (M, Dm, Sm)

Figure 2d provides a broader context for the environ-

ment in which APR- and D3R-based retrievals agree. In

other words, this panel tries to check, in cases where both

the radar observations and the retrievals match at the

collocation site, if the radar profiles from APR and D3R

match as well. The first step is to select all the bins of the

conditioning (ZKu,ZKu2Ka,T) hypercube whereAPR and

D3R retrievals of (M,Dm, Sm) jointly agree (less than 20%

of relative error). Then, all the corresponding collocated

samples are collected and their distribution is plotted as a

function of the local T measured by the CIT (right col-

umn). The last step is to collect the corresponding profiles

of reflectivity and temperature (fromMERRA) to compute

contour-frequency-by-temperature diagrams (CFTDs),

which are histograms of reflectivity at a given tempera-

ture. The envelopes of the CFTDs ofZKu andZKa versus

temperature are shown in the left and center columns,

respectively (the median profile is plotted as a solid line,

while the 10% and 90% quantiles are plotted as dashed

lines). These graphs show that the collocated samples

where APR and D3R agree are mostly at temperatures

warmer than 2258C, where a resemblance can be ob-

served between APR and D3R profiles of reflectivity.

The limited sensitivity of D3R’s Ka band (;5 dBZ)

explains the lack of data for T # 2258C.

e. Microphysical dashboard for triple collocations
from OLYMPEx

Figure 3 shows the retrieval dashboard for triple col-

locations from OLYMPEx. These results correspond to

the profiles shown in Fig. 1, where the liquid PIA and

JUNE 2020 SY ET AL . 1001

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/6/993/4947162/jtechd190104.pdf by guest on 24 June 2020



local LWC are lower than the thresholds described in

section 4a. Figure 3a shows that there are half as many

usable samples than in the GCPEx case due to more

severe liquid attenuation (2276 APR and 802 D3R

samples in OLYMPEx vs 4911 APR and 1901 D3R

samples in GCPEx). The preferential MSPs are still

clustered around a diagonal of the (a, b) plane; how-

ever, this diagonal is different from the diagonal in the

GCPEx collocations (Fig. 2). There are also differ-

ences between APR- and D3R-based diagonals. These

discrepancies are due to differences in the observed

reflectivities, which can be seen in Fig. 3b: the APR

observations (top two rows) occupy a larger domain

of the (ZKu, ZKu2Ka) plane than the D3R observa-

tions, particularly for ZKu $ 20 dBZ. A comparison

between retrieved microphysics in Fig. 3c shows a

good agreement between retrievals and with the references.

The saturation of the Nevzorov probe for larger IWC

can be seen through the negative bias between MNev

and the retrieved M. Figure 3d shows a remarkable

resemblance between profiles of ZKu and ZKa mea-

sured by APR and D3R (all from 5 December 2015;

see Fig. 1), which again comforts the idea of a suitable

cross calibration between the two radars.

While all the dashboards discussed so far are built

using an ‘‘observation’’ hypercube (ZKu, ZKu2Ka, T),

one could also build a dashboard conditioned by

other parameters. For instance, with a ‘‘thermody-

namic’’ hypercube [(T, RH, EDR) with RH the

relative humidity with respect to ice, and EDR

the eddy dissipation rate], one could compare re-

trievals from single- and dual-frequency radar ob-

servations, or from non-Doppler and Doppler radar

observations.

FIG. 3. Retrieval dashboard from triple collocations in OLYMPEx (APR vs D3R). (a) Distribution of OMSPs as a function of (a, b)

(marker size represents the occurrence frequency, and solid line is fit for OMSP ‘‘diagonal’’). (b) Mean values, conditional to (ZKu,

ZKu2Ka) measured by (top),(middle) APR and (bottom) D3R, of bulk moments (references in top row, retrievals in middle and bottom):

IWC M or MNev (marker color), mean diameter Dm or D0 (marker size), and spread Sm or S0 (marker type). (c) Scatterplots comparing

bulk moments [(left) M, (center) Dm, and (right) Sm] retrieved from APR (horizontal axis) to those from D3R and references (vertical

axis, marker size represents the occurrence frequency). (d) Profiles where retrievals from APR and D3R agree within 20% of relative

error: vertical profiles of quantiles of (left) ZKu and (center) ZKa, and (right) number of samples.
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5. Comparison between GCPEx and
OLYMPEx retrievals

In this section, retrievals from GCPEx are compared

to those from OLYMPEx to study the sensitivity of the

microphysical retrievals to the meteorological regime.

a. OMSPs constrained by collocated D3R
observations: GCPEx versus OLYMPEx

First, all acceptable D3R observations fromGCPEx and

OLYMPEx are used, separately, to constrain T-matrix

simulations. Figure 4a shows that many more samples

are accurately simulated in GCPEx than in OLYMPEx

(more than 16 000 vs;4800). This results from the lower

impact of attenuation on the radar observations in

GCPEx (lighter precipitation) than inOLYMPEx. Similar

to Figs. 2 and 3, the preferential MSPs are mostly along a

slanted line of the (a, b) plane, and theOMSP diagonals of

GCPEx and OLYMPEx are almost identical. D3R ob-

servations in both field campaigns occupy the same region

of the (ZKu, ZKu2Ka) space (see Fig. 4b, second row for

GCPEx and bottom row for OLYMPEx). The Nevzorov

probe does not capture the higher values of IWC seen

in GCPEx, most likely due to saturation of the probe.

Figure 4c shows a good agreement between GCPEx- and

OLYMPEx-trained retrievals of M and Dm. For Sm, the

correlation between GCPEx and OLYMPEx results is

weaker. Thus, while the retrievals of the lower-order

moments seem robust to the change in training dataset,

the retrieved spread seems to depend on the meteo-

rological regime being measured. Figure 4d is slightly

modified compared to Figs. 2d and 3d. It still shows

vertical profiles of reflectivity for cases where GCPEx

FIG. 4. Retrievals fromD3R (Ku, Ka) observations (GCPEx vs OLYMPEx). (a) Distribution of OMSPs as a function of (a, b) (marker

size represents the occurrence frequency, and solid line is fit for OMSP ‘‘diagonal’’). (b) Mean values of bulk moments [(top) references,

(middle),(bottom) retrievals], conditional to (ZKu, ZKu2Ka) measured by D3R in (top),(middle) GCPEx and (bottom) OLYMPEx: IWC

(marker color), mean diameter (marker size), and spread (marker type). (c) Scatterplots comparing bulk moments retrieved from D3R-

GCPEx (horizontal axis) to those fromD3R-OLYMPEx and references (vertical axis, marker size represents the occurrence frequency).

(d) Profiles where retrievals from D3R-GCPEx and D3R-OLYMPEx agree within 20% of relative error: profiles, as a function of (left)

altitude and (right) temperature of themedian ofZKu (thick line) andZKa (thin line), and number of collocated samples (circles with sizes

representing the number of samples).
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and OLYMPEx retrievals agree well (less than 20% rel-

ative error for all bulkmoments); however, the left column

shows themedian profile ofZKu (thin line) andZKa (thick

line) as a function of the altitude [similar to a contour-

frequency-by-altitude diagram (CFAD)], whereas the

right column shows the same profiles but as a function of

temperature (CFTD). In both plots, the vertical distri-

bution of the collocated samples (equivalent to the his-

tograms shown in the right column of Figs. 2d and 3d) is

shown as circles, with sizes proportional to the number

of collocated samples (the alternative would have

been to plot one distribution vs T and another one vs

the altitude, which would clutter Fig. 4d). The CFAD

representation hardly shows any resemblance between

GCPEx and OLYMPEx: the samples in GCPEx and

OLYMPEx are located at different altitudes (red circles

for OLYMPEx mostly above 3 km, whereas the blue

circles for GCPEx are all below 3.5km), and the re-

flectivities fromOLYMPEx are significantly higher (more

than 10dB) than those from GCPEx. On the other hand,

the CFTD representation shows that the collocated sam-

ples are at the same temperatures (overlapping circles),

and there is a high resemblance between Ka-band pro-

files for T 2 [225, 28]8C.

b. OMSPs constrained by collocated APR
observations: GCPEx versus OLYMPEx

Figure 5 displays a similar dashboard (GCPEx vs

OLYMPEx) built using collocated APR observations.

Figure 5b clearly illustrates the correlation between re-

trieved particle size and DWR ZA,Ku2Ka, and, the de-

pendency of M on both ZA,Ku and ZA,Ku2Ka. While the

FIG. 5. Retrievals fromAPR (Ku, Ka) observations (GCPEx vs OLYMPEx). (a) Distribution of OMSPs as a function of (a, b) (marker

size represents the occurrence frequency, and solid line is fit for OMSP ‘‘diagonal’’). (b) Mean values of bulk moments [(top) references,

(middle),(bottom) retrievals], conditional to (ZKu, ZKu2Ka) measured by APR in (top),(middle) GCPEx and (bottom) OLYMPEx: IWC

(marker color), mean diameter (marker size), and spread (marker type). (c) Scatterplots comparing bulk moments retrieved from APR-

GCPEx (horizontal axis) to those fromAPR-OLYMPEx and references (vertical axis, marker size represents the occurrence frequency).

(d) Profiles where retrievals from APR-GCPEx and APR-OLYMPEx agree within 20% of relative error: profiles, as a function of (left)

altitude and (right) temperature of the median ofZKu (thick line) andZKa (thin line), and number of collocated samples (circles with sizes

representing the number of samples).
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referenceD0 has a similar behavior as the retrievals, one

can note the limited range of the Nevzorov measure-

ments forZA,Ku$ 22dBZ (ZA,Ku# 5 dBZ), whereMNev

underestimates (overestimates) the IWC. There are

some differences between the reflectivities measured

during the two campaigns: specific to GCPEx are the

small particles forZKu#25dBZ and larger particles for

(ZKu $ 15dBZ, ZKu2Ka $ 10 dB); on the other hand, in

OLYMPEx, there are heavier particles for (ZKu $

25dBZ, ZKu2Ka # 4 dB). All these differences explain

the intercampaign differences in Fig. 5a: in general, the

exponents b of the OMSPs of GCPEx are larger than

those of OLYMPEx (blue line above red line). Figure 5c

confirms the correlation betweenGCPEx andOLYMPEx

retrievals ofM andDm, and the lower correlation between

retrieved Sm, consistent with the D3R dashboard (Fig. 4).

Themedian of the profiles whereGCPEx andOLYMPEx

retrievals agree are plotted in Fig. 5d as a function of al-

titude (left) and temperature (right). These graphs confirm

thehigh resemblance between theAPRprofiles ofGCPEx

andOLYMPEx (especially atKu band), particularly in the

representation as a function of the temperature.

6. Sensitivity of the OMSPs and
microphysical retrievals

This section discusses the sensitivity of the OMSP

retrievals, following the approach of Pianosi et al. (2016):

the sensitivity to the input parameters is analyzed globally

in section 6a [by varying the quantization of the space

of (a, b) parameters] and locally in section 6b [by

perturbing (a, b) around a fixed value]. Section 6c an-

alyzes the sensitivity to the scattering model. For the

sake of simplicity, the remainder of the article focuses

on OLYMPEx in situ observations and collocated APR

measurements. Although not shown, similar results are

obtained with GCPEx or D3R data.

a. Sensitivity to the quantization of the space of
mass–size parameters

Five sets of MSP parameterizations are studied to

assess how sensitive the retrievals are to the quantiza-

tion of the MSP space [set of values for a and b in

m(D) 5 aDb]:

d ‘‘AfBf’’ (fine sampling of a and b): It is the full set of

power laws used so far (baseline); as described in

section 3b, it consists of eight values for a and seven

values for b;
d ‘‘AcBc’’ (coarse sampling of a and b): This set retains

every other prefactor and exponent ofAfBf [a15 0.0005,

a3 5 0.0019, a5 5 0.0071, a7 5 0.0269 (ingcm2b), and

b1 5 1.01, b3 5 1.67, b5 5 2.34, and b7 5 3];
d ‘‘AuBf’’ (unique a 5 0.0037 g cm2b, fine sampling of

b): Only varying the exponent b;
d ‘‘AfBu’’ (fine sampling of a, unique b 5 1.67): Only

varying the prefactor a;
d ‘‘AuBu’’ (a 5 0.0037 g cm21.67 and b 5 1.67): Not

allowing for any MSP variation.

The retrievals are compared on a dashboard, where

the AfBf configuration is the baseline. Table 3 summa-

rizes the results through the number of collocated APR

observations accurately approximated by the chosen

MSP set, the correlation coefficient C and relative bias

B of the bulk moments (M,Dm, Sm), and the equation of

the OMSP ‘‘diagonal.’’

All the retrieved moments are strongly correlated

to those of AfBf: even in the AuBu case, where theMSP

is kept fixed, C is higher than 78%. The main difference

is in the number of collocated records that are accurately

TABLE 3. Global and local sensitivities to the MSP space. Effect of quantization: the various MSP sets are ‘‘AfBf’’ (fine sampling, chosen

as baseline), ‘‘AcBc’’ (coarse sampling), ‘‘AuBf’’ [fixed prefactor a in m(D) 5 aDb], ‘‘AfBu’’ (fixed exponent b), and ‘‘AuBu’’ (fixed a 5
0.0037 g cm21.67 and b 5 1.67). For a local sensitivity analysis around ‘‘AuBu,’’ the following sets are considered: ‘‘AmBu’’ (fixed a 5
0.0019 g cm21.67 andb5 1.67), ‘‘ApBu’’ (fixed a5 0.0071 g cm21.67 andb5 1.67), ‘‘AuBm’’ (fixeda5 0.0037 g cm21.34 andb5 1.34), and ‘‘AuBp’’

(fixed a5 0.0037 g cm22 and b5 2). APR observations from OLYMPEx are used to constrain T-matrix simulations at (Ku, Ka).Naccurate is the

proportion (in %) of the 25 589 collocated APR samples that are accurately approximated by at least one of the T-matrix simulations.

MSP

set

Radar

frequencies

Naccurate

(%)

Correlation C

(%)

Bias B

(%)

OMSP diagonalM Dm Sm M Dm Sm

AfBf Ku, Ka 60 Baseline for calculation of C and B b ; 0.133adB 1 5.030

AcBc Ku, Ka 31 95 97 91 28 3 21 b ; 0.115adB 1 4.804

AuBf Ku, Ka 27 96 97 95 8 24 2 b 5 1.67 most frequent (;60% of cases)

AfBu Ku, Ka 22 95 97 89 17 211 5 a 5 0.0037 g cm21.67 most frequent (;75% of cases)

AuBu Ku, Ka 18 94 96 78 20 211 1 No MSP variation (a 5 0.0037 g cm21.67, b 5 1.67)

AmBu Ku, Ka 3 93 97 94 28 26 6 No MSP variation (a 5 0.0019 g cm21.67, b 5 1.67)

ApBu Ku, Ka 2 84 80 77 230 230 16 No MSP variation (a 5 0.0071 g cm21.67, b 5 1.67)

AuBm Ku, Ka 3 86 81 70 228 214 10 No MSP variation (a 5 0.0037 g cm21.34, b 5 1.34)

AuBp Ku, Ka 6 94 95 93 8 10 1 No MSP variation (a 5 0.0037 g cm22, b 5 2)
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approximated by the simulations: the coarser the set of

MSPs, the smaller the number of accurate approxima-

tions of reflectivities (from 60% with AfBf to less than

20% for the AuBu case). The variability of the exponent

b seems to have a stronger impact on the range of

accuracy of the simulated reflectivities, since AuBf

approximates accurately more collocated records than

AfBu, and the retrievals from AuBf have smaller biases

than the retrievals from AfBu.

The equations of the OMSP ‘‘diagonals’’ of AfBf and

AcBc are different due to the quantization. In the uni-

variate cases, the MSPs that have the highest frequency

of occurrence are close to the AfBf diagonal (defined by

bAfBf 5 0.133adB 1 5.030): in the AuBf case (i.e., a 5
aAuBf 5 0.0037 g cm2b), bAuBf 5 1.67 is the exponent

with the highest frequency of occurrence (;60%),

which is close to the corresponding value on the di-

agonal bAfBf(aAuBf) 5 1.80; on the other hand, in the

AfBu case (i.e., b5 bAfBu5 1.67), aAfBu5 0.0037gcm21.67

is the prefactor with the highest frequency of occur-

rence (;75%), which is close to the corresponding

value on the diagonal aAfBu(bAfBu) 5 0.0030 g cm21.67.

All these similarities show that the optimization con-

verges to OMSPs that have characteristics similar to

those of AfBf.

b. Local sensitivity to the mass–size parameters

We now study the effect of local perturbations of

the MSP parameters around AuBu, which has fixed

a 5 0.0037 g cm21.67 and b 5 1.67. The four fixed MSPs

considered are

d ‘‘AmBu’’: a 5 0.0019 g cm21.67 and b 5 1.67;
d ‘‘ApBu’’: a 5 0.0071 g cm21.67 and b 5 1.67;
d ‘‘AuBm’’: a 5 0.0037 g cm21.34 and b 5 1.34;
d ‘‘AuBp’’: a 5 0.0037 g cm22 and b 5 2.

The results of comparisons to the AfBf configuration

(baseline) are provided in Table 3 (bottom rows). The

retrieved moments still have high correlations to those

of AfBf (higher than 72%); however, there are clear

differences with respect to the performance of AuBu

both in terms of the number of accurately approxi-

mated records (all smaller than 6% of the total), and

in terms of bias (except for AuBp, which has small

biases). Thus, the choice of the MSP coefficients has a

significant impact on the ability to approximate radar

observations.

c. Sensitivity to the scattering model

So far, a T-matrix code was used to compute the radar

reflectivities according to Eq. (1). In this framework

(denoted ‘‘TMin’’), the scatterers are modeled as oblate

spheroids of maximum size D and aspect ratio RASP(D)

derived from the imaging probes. The approach is

now extended to include Mie and discrete-dipole

approximation (DDA) scattering models. The Mie

calculations, correspond to T-matrix calculations where

scatterers are modeled as spheres of diameter D. The

Mie reflectivities are therefore computed using TMin

with a fixed aspect ratio of 1. The DDAmodel computes

the scattering properties of irregularly shaped scatterers

by dividing them into dipoles (Purcell and Pennypacker

1973). The DDA is therefore conformal to the geometry

of irregularly shaped particles. For the DDA calcula-

tions, we use the OpenSSP lookup table (LUT) built

using the DDSCAT software (Draine and Flatau 1994;

Kuo et al. 2016). OpenSSP (available online at https://

storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp) consists

of 9053 ice particles of varying shapes (from pristine ice

to aggregates) and sizes (D 2 [0.15, 17.27] mm). To

compute the backscattering cross sections, we read

OpenSSP using D and the mass m(D) assumed by the

simulated MSP and average over all the habits in the

LUT. With the three scattering models (Mie, TMin and

DDA) and the PSDs measured during OLYMPEx, re-

flectivity factors are computed at Ku and Ka bands, for

all the MSPs. Collocated (Ku, Ka)-band observations

from APR then allow us to identify the OMSPs. Although

the same in situ and radar data are used in these simu-

lations, the intrinsic assumptions of the three scattering

models are different, and therefore, the models will

produce radar reflectivities that are not identical. Thus,

the OMSPs of the various scattering models will not be

identical (the MSPs such that DKu,Ka # 1.5 dB may vary

from one model to the other).

The retrieval dashboard is shown in Fig. 6. Of 25 589

collocated APR samples (this number corresponds to

collocated samples such that T # 218C, with low liquid

PIA and LWC), the Mie approach accurately ap-

proximates 51% of the samples, whereas TMin and

DDA both accurately approximate ;60% of the

samples (;2000 more samples than Mie). There are

therefore advantages in using scattering models that

account for the morphological diversity of frozen

hydrometeors.

The three models produce very similar preferential

MSPs (Fig. 6a). The OMSP diagonals are slightly dif-

ferent between DDA (higher b) andMie (lower b), with

TMin bracketed by these two models: the TMin diagonal

transitions from being similar to the Mie diagonal for

lower a and b to being closer to the DDA diagonal for

larger a and b. Figure 6b shows the bulk moments (ref-

erence in top row, retrievals below) as a function of the

collocated APR observations (ZKu, ZKu2Ka), for simu-

lations done using TMin (top two rows), DDA (third

row), and Mie (bottom row). Figure 6b confirms the
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features seen in the previous dashboards, namely, 1) the

saturation ofMNev for lower and larger IWCs, 2) a joint

dependency of M on (ZKu, ZKu2Ka), 3) increasing Dm

with increasing ZKu2Ka, and 4) larger spreads Sm for

larger ZKu. Among the slight intermodel differences,

one can note the presence, only in the Mie results, of

samples for (ZKu , 10 dBZ, ZKu2Ka $ 8 dB), which

correspond to larger particles with a low mass and

narrow spread. Figure 6c shows a very strong corre-

lation between the retrieved moments. However,

there are also nonnegligible biases between Mie re-

sults and the results from the other scattering models:

to match a given radar observation simulated by TMin

or DDA (a bin in the (ZKu, ZKu2Ka, T)–hypercube),

the Mie approach uses smaller (Dm smaller by210%)

but heavier (M larger by 131%) spheres than the

particles used in TMin and DDA. Figure 6d shows

that the closest agreements between the three scat-

tering models are observed at temperatures colder

than 2108C.

7. Conclusions

This article has illustrated the high value of multi-

instrumented field campaigns such as GCPEx and

OLYMPEx to observe frozen hydrometeors, model

their scattering behavior, and estimate their micro-

physical properties. By measuring the thermodynamic

characteristics of the atmosphere, such field campaigns

provide a depiction of the true state of the atmosphere,

which can be used as a reference to develop radar

retrieval algorithms.

FIG. 6. Sensitivity of retrievals to the scattering models (T matrix vs DDA vsMie), with simulations constrained by APR (Ku, Ka) data

from OLYMPEx: (a) Distribution of OMSPs as a function of (a, b) (marker size represents the occurrence frequency, and solid line is

OMSP ‘‘diagonal’’). (b) Mean values of bulk moments [(top) references, (bottom three rows) retrievals], conditional to (ZKu, ZKu2Ka)

measured by APR in OLYMPEx, based on scattering simulations from (top two rows) TMin, (third row) DDA, and (bottom) Mie: IWC

(marker color), mean diameter (marker size), and spread (marker type). (c) Scatterplots comparing bulk moments retrieved from TMin

(horizontal axis) to those from DDA and Mie and references (vertical axis, marker size represents occurrence frequency). (d) Profiles

where retrievals from TMin, DDA andMie agree within 20% of relative error: vertical profiles of quantiles of (left)ZKu and (center)ZKa,

and (right) number of samples.
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The presented work has shown that in situ measure-

ments of microphysical properties of ice and snow

(particle sizes and aspect ratios) could be related to

collocated observations from airborne and ground-based

radars, even when the true mass–size characteristics of the

scatterers are unknown (measured neither during GCPEx

nor OLYMPEx). Our approach consists in parameter-

izing the mass–size dependency of scatterers via a large

ensemble of power laws, and using various scattering

simulators (T matrix, Mie, DDSCAT) to compute un-

attenuated radar reflectivity factors. Properly collocated

and screened radar observations then allowed us to

identify the optimal parameterizations, or OMSPs. We

introduced a ‘‘retrieval dashboard’’ to jointly analyze

the OMSPs and the relationship between the retrieved

microphysical moments (M, Dm, Sm), the local thermo-

dynamics and remote sensing observations. The dash-

board, through its conditioning hypercube, provides a

means for quantitative comparisons between retrievals

from various instruments (APR vs D3R) or campaigns

(GCPEx vs OLYMPEx).

In this framework, all the results obtained confirm

that the MSP is the factor that causes the highest vari-

ability in multifrequency radar simulations. The OMSPs

depend on the magnitude of the radar responses and on

the scattering model used to simulate the radar obser-

vations. A sensitivity analysis showed the advantage of

using 1) morphologically agile scattering models such

the DDA or T matrix with the measured aspect ratio,

and 2) a refined set of mass–size relationships. This ar-

ticle illustrates also the difficulty to find a ‘‘universal’’

parameterization that fits all radar observations. However,

the preferential OMSPs tend to cluster along a ‘‘diagonal’’

band of the (a, b) plane. These results confirm findings

previously reported in the literature (Heymsfield et al.

2002a; Finlon et al. 2019).

The instances of triple-collocation APR–CIT–D3R in

GCPEx and OLYMPEx showed the insensitivity of the

retrievals to the observing platform: similar retrievals

are obtained whether based on APR or D3R observa-

tions, which indicates also a decent cross calibration

between the two radars.

The dashboard provided a common platform to com-

pare retrievals from all the airborne (or ground based)

radar data collected inGCPEx to those fromOLYMPEx.

Despite the differences in intensities of the sampled

events (more intense precipitation in OLYMPEx), the

comparisons have shown a good agreement between re-

trievals of M and Dm, whereas the retrieval of Sm seems

campaign dependent. For this type of comparison be-

tween different meteorological regimes, a representation

of the radar data as a function of the temperature (CFTD

format) is more suitable than a representation as a

function of altitude (CFAD format) to highlight

common features between radar profiles. Such sim-

ilarities hint at common properties in the thermo-

dynamic processes that take place in the entire radar

profile, that is, beyond the location of the radar/in

situ collocation.

Most of the work presented in this article is based on

dual-frequency (Ku, Ka) radar observations and simu-

lations. However, the approach followed can be applied

to other combinations of frequencies or other remote

sensing observations. Our retrieval approach does not

attempt to build an explicit analytical retrieval op-

erator, but instead it provides a distribution of values

of the retrieved (M,Dm, Sm). In the same vein, big-data

methods (e.g., machine learning) could be envisioned to

better characterize the microphysics of hydrometeors

using radars.
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APPENDIX A

Screening of Liquid Attenuation

Liquid or mixed-phase scatterers can strongly at-

tenuate radar observations especially at higher fre-

quencies. This is a problem for the MSP analysis, as it

relies on comparisons between radar measurements

and simulations of unattenuated radar reflectivities.

Frozen hydrometeors also attenuate the radar signal.

However, in the absence of high-density hydrome-

teors (e.g., hail and graupel), as is the case in GCPEx

and OLYMPEx, the attenuation at Ku and Ka bands

by low-density snow/ice is not as strong as the liquid

attenuation. Moreover, for frozen particles, the ex-

tinction coefficient depends on the masses of the

particles, which are unknown and the objective of

this article. In addition, attenuation corrections, for

example, using the Hitschfeld–Bordan approach, are
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delicate since they solve for a mathematically ill-

posed problem (Hitschfeld and Bordan 1954).

To avoid biasing the results of our analysis, we focus

on the attenuation by liquid particles and try to identify

and eliminate the radar observations that are severely

attenuated. For every collocated sample, the two-way

PIA due to liquids is computed between the location of

the radar and the CIT as

PIA
f
(r

CIT
)5 2

ðrCIT
0

k
ext,f

(s) ds , (A1)

with f the radar frequency, and rCIT the line-of-sight

distance between the radar and the CIT. The extinction

coefficient kext,f (in dBkm21) is deduced from the re-

flectivity ZKu at Ku band (inmm6m23), by assuming

that ZKu is marginally attenuated. This is done using the

relationship

k
ext,f

5a
Ku/f

(Z
Ku
)bKu/f . (A2)

The coefficients (aKu/f, bKu/f), which are listed in

Table A1, are obtained from T-matrix simulations

(TMin) using all the PSDs measured during GCPEx

and OLYMPEx, at temperatures T $ 18C.
In cases where Ku-band data are unavailable (due

to the limited sensitivity of Ku in APR compared to Ka

band), the k–Z relationships used are between kext,Ka

andZKa, the reflectivity at Ka band (parameters listed in

Table A1). The computed PIAs allow to flag the collo-

cated samples where the liquid attenuation exceeds the

threshold PIAmax 5 0.5 dB.

APPENDIX B

References for the Retrieved Bulk Moments

The retrieved moments are the bulk moments

(M, Dm, Sm) of the OMSPs. The true values of these

bulk moments all require knowledge of the true m(D)

relationship, which is was measured neither during

GCPEx nor OLYMPEx. Instead, reference values

are sought to provide an indication of the magnitudes

of the bulk moments. This appendix discusses the

references for the various bulk moments, which are

illustrated using data from OLYMPEx (similar results

are obtained with GCPEx). The OMSPs are determined

by constraining T-matrix simulations via collocated APR

observations at Ku and Ka bands.

The reference chosen for M is the total water content

MNev measured by the Nevzorov probe at negative

temperatures. Even though MNev can occasionally

underestimate the true water content (see, e.g., Korolev

et al. 2013), it is the only available independent

measurement of ice water content (forMNev 2 [0.02,

1.5] g m23). For Dm and Sm, one option could be to

use the PSD-weighted mean DN 5EN(D) and spread

SN 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN[(D2DN)

2]/DN

q
, with EN(�) defined as

E
N
(y)5

1

N
T

ðDmax

Dmin

y(D)N(D) dD,

for any function y(D), (B1)

N
T
5

ðDmax

Dmin

N(D) dD . (B2)

However, in this case, the kernelN(D) is quite different

than the kernel m(D) N(D) used to define Dm and Sm
[see Eqs. (3) and (4)]. Figure 7 displays scatterplots of

the retrievedmoments (M in top row,Dm in middle row,

Sm in bottom row) as a function of the references (blue

asterisks). The plots in the left column correspond to

unconstrained simulations (all MSPs equally likely),

whereas the plots in the right column correspond to

the OMSPs. The MSP perturbation leads to a large

variability of the moments, especially forM. The MSP op-

timization reduces this variability significantly (top right),

leading to a stronger correlation betweenM andMNev.

However, the retrieved M are also biased positively

compared to MNev, most likely due to the saturation of

the Nevzorov probe. The histograms of Dm versus DN

and Sm versus SN (blue asterisks in bottom two rows)

show large dispersions, which are not reduced by the

MSP optimization. Thus (DN, SN) are not suitable ref-

erences for mass-weighted moments such as (Dm, Sm).

As an alternative, volume-weighted statistics can

be considered through the mean DV 5EV(D) and the

spread SV 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EV[(D2DV)

2]

q
/DV , where the expectation

EV(�) is defined in Eq. (10). These moments are defined

by a kernel that is the product between N(D) and an

increasing function of D [the volume y(D)], similar to

m(D)N(D) used to define (M, Dm, Sm). Figure 7 (green

TABLE A1. Parameters of k–Z relationships from in situ mea-

surements at temperatures T$ 18C during GCPEx and OLYMPEx.

Scattering calculations from T matrix (TMin). In the relation-

ship kext,f2 5af1/f2(Zf1)
bf1 / f2 , Zf1 is the reflectivity at frequency

f1 in mm6 m23, kext,f2 is the desired extinction at frequency

f2 in dB km21, af1/f2 is in dB km21 (mm6 m23)21, and bf1/f2
is

unitless.

Frequency GCPEx OLYMPEx

Zf1 kext,f2 af1/f2 bf1/f2
af1/f2 bf1/f2

Ku Ku 1.532 3 1024 0.72 1.606 3 1024 0.72

Ka Ka 5.335 3 1024 0.92 6.685 3 1024 0.91

Ku Ka 9.966 3 1023 0.43 1.103 3 1022 0.43
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markers in second and third rows) shows the strong

correlation between Dm and DV, and similarly between

Sm and SV, even in the unconstrained case. However,

there are also biases between retrieved and refer-

ence quantities (Dm smaller than DV, and Sm larger

than SV), due to the fact that y(D) is not m(D).

To avoid such biases, we choose as references the

median-volume diameter D0 [defined by Eq. (8)],

and the volume-weighted spread about D0, that is,

S0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EV[(D2D0)

2]

q
/D0. Figure 7 (red markers in

middle and bottom rows) shows the strong correla-

tions between (Dm, Sm) and (D0, S0), as well as the

reduced biases compared to those of (DV, SV).
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